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Abstract—In software engineering chatrooms, communication
is often hindered by imprecise questions that cannot be answered.
Recognizing key entities (e.g., programming languages and li-
braries) and user intent (e.g., learning or requesting a review)
can be essential for improving question clarity and facilitat-
ing better exchange. However, existing research using natural
language processing techniques often overlooks these software-
specific nuances. In this paper, we introduce SoftwarE-specific
Named entity recognition, Intent detection, and Resolution clas-
sification (SENIR), a labelling approach that leverages a Large
Language Model to annotate entities, intents, and resolution
status in developer chatroom conversations. To offer quantitative
guidance for improving question clarity and resolvability, we
build a resolution prediction model that leverages SENIR’s
entity and intent labels along with additional predictive features.
We evaluate SENIR on the DISCO dataset using a subset
of annotated chatroom dialogues. SENIR achieves an 86% F-
score for entity recognition, a 71% F-score for intent detection,
and an 89% F-score for resolution status classification. Fur-
thermore, our resolution prediction model, tested with various
sampling strategies (random undersampling and oversampling
with SMOTE) and evaluation methods (5-fold cross-validation,
10-fold cross-validation, and bootstrapping), demonstrates AUC
values ranging from 0.7 to 0.8. Key factors influencing resolution
include positive sentiment and entities such as Programming
Language and User Variable across multiple intents, while
diagnostic entities (e.g., Error Name) are more relevant in error-
related questions. Moreover, resolution rates vary significantly by
intent: questions about API Usage and API Change achieve higher
resolution rates, whereas Discrepancy and Review have lower
resolution rates. A Chi-Square analysis confirms the statistical
significance of these differences.

Index Terms—Empirical Software Engineering, Developer
Chatroom, Name Entity Recognition, Large Language Models,
Question Resolution, Mixtral

I. INTRODUCTION

Developer chatrooms, such as Discord1 and Slack,2 are cru-
cial tools for collaboration and knowledge sharing in software
development. These platforms enable developers to seek help,
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solve technical problems, and engage continuously with the
community. Collective knowledge available in chatrooms has
been shown to accelerate software development and improve
project outcomes [46], [52]. Additionally, chatrooms help
build and maintain active developer communities, which are
vital to the long-term success of open-source projects [50].

Despite the important role of chatrooms, their effectiveness
is often hindered by communication issues. Poorly articulated
questions that lack clarity or essential details frequently lead
to misunderstandings, incomplete responses, or no response
at all. For instance, research on Gitter3 chatrooms finds that
around 40% of questions remain unanswered [14] and delays
in resolving problems discourage community participation [3].
While question-and-answer (Q&A) platforms like Stack Over-
flow are well studied [6], [29], [33], research on developer
chatrooms is still limited. Initial findings suggest that includ-
ing URLs can reduce response rates, whereas user mentions
improve the rates [14]. Recent work by Lill et al. [32] has
explored automated methods to improve developer support in
chatrooms by identifying similar past conversations.

In developer chatrooms, a conversation consists of an initial
question or statement (e.g., asking for help or seeking clari-
fication) followed by responses, clarifications, and follow-ups
until the question is resolved or left unresolved. The quality
of the initial question impacts resolution outcomes, as well-
formed questions often include sufficient technical details,
such as code snippets or error types, making them easier to
address. Named Entity Recognition (NER) is a useful method
for extracting such technical details by identifying and cate-
gorizing domain-specific entities, such as libraries and error
messages [31], [56]. While traditional NER methods work
well on structured and formal text, they often require extensive
feature engineering and task-specific training datasets, limiting
their adaptability to informal and fragmented chatroom conver-
sations. In contrast, Large Language Models (LLMs) are good
at understanding complex natural language and generalizing
across diverse contexts due to their pretraining on vast corpora.

To address these challenges, we propose an approach named
as SoftwarE-specific Named entity recognition, Intent de-
tection, and Resolution classification (SENIR) that leverages
an LLM to label the chatroom conversations. SENIR rec-
ognizes software-specific entities, detects the intent behind
a question in the context of developer chatrooms [24], and

3https://gitter.im
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classifies whether a conversation has reached a satisfactory
conclusion (i.e., resolved) or remains unresolved. This study
evaluates SENIR using the DISCO dataset [47], a collection
of 29,243 developer chatroom conversations extracted from
various channels related to software engineering (SE) on Dis-
cord. Our work analyzes the developer chatroom conversations
along the following three research questions (RQs):
RQ1: How effective is SENIR in labeling developer chat-
room conversations?

Chatroom conversations are by nature informal, fast-paced,
and lack sufficient context, making automated labelling a chal-
lenging task. To address this, we design SENIR using Mixtral
8x7B [27] to perform software-specific NER, intent detection,
and resolution status classification. SENIR is evaluated on a
manually labelled subset of 400 Discord conversations, achiev-
ing high accuracy (91% for NER, 76% for intent detection,
and 93% for resolution status), with corresponding F-scores
of 86%, 71%, and 89%.
RQ2: What features of the developer questions contribute
to their resolution outcomes?

We use SENIR to automatically label 29,243 developer
conversations from the DISCO dataset to identify software-
specific entities, intents, and resolution status. The labelled en-
tities and intents from questions are used to engineer features
together with additional features such as sentiment, posting
time, and question length. These question-related features
are used to train a mixed-effect model to predict resolution
outcomes. The model achieves an AUC of 0.75 and the
feature importance analysis reveals that positive sentiment and
technical specificity (e.g., use of library functions) positively
impact resolution, while late posting times and excessive URLs
negatively influence resolution.
RQ3: How do entities, intents, and their interactions
impact the resolution of developer questions?

We analyze the 29,243 labelled conversations to examine
how entities and intents influence resolution success. Chi-
Square tests reveal significant differences in resolution rates
across intents, with API Usage and API Change demonstrate
better resolution rates (33.6% and 26.2%) than Discrepancy
and Review (22.0%, and 18.8%). Within intents, specific
entity pairs show better resolution outcomes than others. For
instance, the pair (Programming Language, Library
Function) is particularly effective for technical intents
like Errors (63.6%), while (UI ELEMENT, Website) shows
much lower success for intents like Discrepancy and Review.

The main contributions of our paper are as follows:

1) We propose SENIR, an LLM-based approach to auto-
matically label developer chatroom conversations with
software-specific named entities, intents, and resolution
status.

2) We provide a predictive model for predicting resolution
status based on the questions posted and reveal the most
influential features for a question to be resolved.

3) By investigating how specific entities and user intents
influence question resolution, we provide actionable in-
sights to help developers refine their questions to poten-
tially achieve higher response rates.

TABLE I
LIST OF CHANNELS IN DISCO DATASET

Channel Number of Conversations

python#python-general 19,684
gophers#golang 8,860
racket#general 538
clojurians#clojure 161

Total 29,243

4) We release the annotated developer conversation dataset
which is derived from DISCO and augmented with the
SENIR labels in our replication package [17].

The rest of the paper is organized as follows: Section II
outlines our methodology, including the case study design and
data analysis. Section III presents the results for each research
question. Section IV discusses the implications of our findings.
Section V discusses related work. Section VI discusses the
threats to validity. Section VII concludes the paper.

II. CASE STUDY DESIGN

This section presents our systematic approach for refining
developer questions in chatrooms by leveraging an LLM. It
includes details on data collection and preprocessing, our
LLM-based approach for labelling developer chatroom con-
versations, manual labelling of a statistical sample set of con-
versations, and feature extraction. Fig. 1 presents an overview
of our approach.

A. Data Collection and Preprocessing

To systematically analyze chatroom conversations, we first
collect and preprocess data from the DISCO dataset [47],
ensuring that our study focuses on relevant developer discus-
sions. Table I presents an overview of the dataset.

Step 1: Extracting messages and metadata. We extract
individual messages along with their associated conversa-
tion IDs, timestamps (“ts”), and user IDs from the DISCO
dataset. For instance, a message like “How do I install X?”
might include metadata such as “Mia” (the user who sent
the message), “Aug 15, 2020, 10:34 AM” (the time it was
sent), and “12345” (the conversation ID to which it belongs).
Fig. 2 provides an example of a real conversation from the
“racket#general” channel of Discord.

Step 2: Aggregating messages by conversation ID. Since
each message is recorded separately without direct references
to other messages, we group messages sharing the same
“conversation ID” to reconstruct complete interactions. This
aggregation enables further analysis (e.g., resolution status
classification) at the conversation level rather than the indi-
vidual message level.

Step 3: Augmenting conversations with additional meta-
data. To better understand when and over what period a
conversation took place, we augment each conversation record
with additional metadata. For instance, we calculate the
range of months over which a conversation took place (e.g.,
“Aug2020–Oct2020”) based on the start and end dates. This
temporal information helps analyze patterns over time, such as
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Fig. 1. Overview of our case study design.

Fig. 2. A conversation in the “racket#general” channel on Discord (The
discussants’ screen names are blurred for the purpose of privacy).

how long discussions tend to last or identify specific periods
of activity.

Fig. 3 presents a sample JSON structure from the “clo-
jurians#clojure” channel. It contains various metadata fields,
including “team domain”, “channel name”, “month”, “start
date”, and “end date”, which provide context about where
and when the conversations took place. Additionally, the
“messages” field stores individual messages with attributes,
such as “conversation ID”, “message number”, timestamp
(“ts”), “user”, and “text”.

B. SENIR for Labelling Developer Chatroom Conversations

We design SENIR to label developer chatroom con-
versations, focusing on three tasks: (1) Software-Specific
NER: NER identifies key software-related entities, such as
Library, Error Name, and Version, which are crucial
for understanding the context of developer discussions. (2) In-
tent Detection: Intent detection determines the purpose of
each conversation, such as whether a user asks to learn a
programming language or deals with an error. Understanding
the intent of the initial question allows for better classification
of conversations. (3) Resolution Status Classification: This
classification task assesses whether a conversation has success-
fully resolved the initial question. Classifying resolved and
unresolved questions helps evaluate the effectiveness of the
chatroom and identifies questions requiring further attention.
Throughout this paper, we follow a consistent notation for
entities and intents: entities are written in typewriter (e.g.,

"team_domain": "Clojurians",
"channel_name": "clojure",
"month": "May-July 2020",
"messages": [{
"conversation_id": "125",
"messages": [{
"msg_num": "1",
"ts": "2020-05-03T08:14:12.575000",
"user": "Ada",
"text": "Hi, I’m new to programming. Any Python

resources?"
}, {
"msg_num": "2",
"ts": "2020-05-03T08:14:23.490000",
"user": "Bob",
"text": "We have a Python resources channel.

@Shira might help."}]}]

Fig. 3. A sample JSON structure from the “clojurians#clojure” channel.

Programming Language), while intents are written in
italics (e.g., API Usage).

Step 1: Selecting the LLM. Although SENIR is compatible
with various LLMs, we select Mixtral 8x7B [27] due to
its top performance and larger context window (33k tokens)
compared to other open-source models on the chatbot arena
leaderboard [9] as of January 23rd, 2024, when we started
our research. The context window size refers to the maximum
number of tokens that a model can process at one time when
generating a response. A larger context window allows the
model to take into account longer sequences of text, which is
important when processing developer conversations that may
contain up to 100 messages.

Step 2: Constructing prompts. To optimize performance,
we design custom prompts to guide the LLM in handling
specific tasks. The prompts include clear rules that instruct the
model on what to focus on. For instance, in the NER prompt,
the rules guide the LLM on which entities to extract (e.g.,
Programming Language). By following best practices in
prompt engineering [25], [40], we enhance the model’s ability
to generate accurate and contextually relevant outputs.

NER prompt example: The model receives the initial
question of a conversation along with timestamps, and is
tasked with recognizing named entities. We collect a list of
28 software-specific entities based on prior work [13], [48],
[54], [56] and include this pre-defined list to guide entity
recognition. Table II provides examples and references for
each of these entities.
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TABLE II
SOFTWARE-SPECIFIC ENTITY CATEGORIES.

Entity Examples Reference

Application Mosh, JKplayer, api-java-client [13], [48],
[54], [56]

Programming
Language

Python, Java, CSS, C++ [13], [48],
[54], [56]

Version (Python) 2.7, (Windows) XP [13], [48]

Algorithm UDP, DFS, RBM [48]

Operation
System

Linux, iOS, Windows [13], [48],
[54], [56]

Device Phone, Mobile, GPU [13], [48],
[54]

Error Name Overflow, OutofRange, I/O Error [48]

User Name John, Maya, Clark, @Maya [48], [54]

Data Structure Array, List, Hash table, Heap [48]

Data Type String, Char, Double [48]

Library Numpy, Scipy, Auto-grad [48], [54],
[56]

Library Class ItemTemplate, actionManager [48], [54],
[56]

User Class myClass, TestClass [13], [48]

Library
Variable

math.inf, swing.color, ActionLis-
tener.Value

[48]

User Variable user id, numberOfRowsInSection [48]

Library
Function

numpy.isinf(), Math.floor() [48], [54],
[56]

User Function
Name

hello(), myFunction() [48], [54],
[56]

File Type JSON, JAR [48], [54],
[56]

File Name WindowsStoreProxy.xml, a.txt [48]

UI Element Button, Scroll bar, Text box [48]

Website MSDN, Google, Yahoo [48]

Organization Apache, Microsoft Research, Fair [13], [48]

License CC BY 4.0, Apache 2.0 [48], [56]

HTML/XML Tag
Name

h1, div, img [48], [54],
[56]

Value “hello world”, 255, 30.5, True [48]

In Line Code grep -rnw, select * from Tab [48]

Output Block Output from console/any IDE [48]

Keyboard Input CTRL+X, ALT, fn [48]

Prompt: Extract all relevant software entities [list of entities] from
the text below.
Input Format:
Question: I am using TensorFlow version 2.5 and encountering an
error during installation. How can I fix this?
Output Format:
[“TensorFlow: Library”, “2.5: Version”]

Intent detection prompt example: The model receives the
initial question of a conversation and is tasked with detecting
the intent. A list of 7 categories of pre-defined intents is used
to label the conversation with one or more intents. The 7

categories are collected based on previous work [1], [5]–[7],
[43], [49] and Table III describes these intent categories.

Prompt: Identify the intents behind the question based on the
following categories: [list of intents].
Input Format:
Question: How to install library X?
Output Format:
[“Learning”]

Resolution status classification prompt example: We also
aim to use the LLM to classify whether a conversation is
“resolved” or “unresolved” based on the content of the full
conversation.

Prompt: Determine if the issue discussed in the following conver-
sation is resolved.
Input Format:
• User 1: How do I fix this bug in Library Y?
• User 2: You should try reinstalling the dependency using version

3.0.
• User 1: That fixed the issue, thanks!
Output Format:
[“Resolved”]

C. Golden Dataset Collection and Manual Labelling

We construct a golden dataset of software engineering-
related chatroom conversations to evaluate the performance of
the LLM in automatically labelling software-specific named
entities, intent, and resolution status of a conversation. To
ensure a representative sample, we randomly select a sta-
tistically significant subset of the collected conversations (as
listed in Table I) with a confidence level greater than 95%
and a margin of error of 5%. This results in a selection
of 400 conversations randomly chosen from the dataset. We
manually verify each conversation to ensure that it begins with
a software engineering-related question.

The manual labelling process involves annotating conver-
sations with software-related entities, intents, and resolution
statuses. Two annotators, both are PhD students (one is the
first author of the paper) in software engineering, indepen-
dently annotate the dataset to ensure a broad and unbiased
perspective. The annotation process is conducted in two phases
to ensure consistency and minimize bias:

Phase 1: Initial annotation and agreement check. The an-
notators first independently label a subset of 200 conversations,
covering software-specific entities, intents, and resolution sta-
tuses. After that, we calculate inter-annotator agreement using
Cohen’s Kappa [10] to measure consistency in labels. The
initial Kappa scores are 0.71 for entity recognition (substantial
agreement), 0.67 for intent detection (substantial agreement),
and 0.76 for resolution status (substantial agreement). Dis-
agreements, such as different interpretations of ambiguous
intents like Conceptual, are discussed, and labelling guidelines
are refined to improve clarity and ensure alignment (e.g.,
specifying cues for distinguishing Learning from API Usage).

Phase 2: Final annotation. Using the refined guidelines
from Phase 1, the annotators label the remaining 200 con-
versations. The final Cohen’s Kappa scores across all 400
conversations are 0.84 for entity recognition (near-perfect
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TABLE III
DESCRIPTIONS OF THE SEVEN INTENT CATEGORIES

Intent Description Reference

API
Usage

This category subsumes questions of the types
"How to implement something" and "Way of
using something," as well as the categories
"How-to" and "Interaction of API Classes." The
posts in this category contain questions asking
for suggestions on how to implement some
functionality or how to use an API, with the
questioner asking for concrete instructions.

[1], [5]–
[7], [43],
[49]

Discrepancy This category contains questions about prob-
lems and unexpected behaviour of code snip-
pets where the questioner has no clue how to
solve them. It includes categories like "Do not
work," "Discrepancy," "What is the Problem?"
and "Why" (non-working code, errors, or unex-
pected behaviour).

[1], [6],
[7], [43],
[49]

Errors Posts in this category deal with the problems
of exceptions and errors, often including an
exception and the stack trace. It is equivalent
to "Error and Exception Handling" and overlaps
with "Why" (non-working code, errors, or unex-
pected behaviour).

[5]–[7],
[43], [49]

Review This category merges "Decision Help" and "Re-
view," "Better Solution," and "What" (concepts),
as well as "How/Why something works" (un-
derstanding, reading, explaining, and checking).
Questioners ask for better solutions or reviews of
their code snippets, best practices, or decision-
making assistance.

[1], [6],
[7], [43],
[49]

Conceptual This category includes questions about the limi-
tations of an API, API behaviour, understanding
concepts such as design patterns or architectural
styles, and background information about some
API functionality. It is equivalent to "Concep-
tual" and includes "Why?" and "Is it possible?"
as well as "What" and "How/Why something
works."

[1], [6],
[7], [43],
[49]

API
Change

This category concerns questions arising from
changes in an API or compatibility issues be-
tween different versions. It includes "Version"
and "API Changes."

[5]–[7]

Learning This category merges "Learning a
Language/Technology" and "Tutorials/-
Documentation," where questioners seek
documentation or tutorials to learn a tool or
language on their own, rather than asking for
specific solutions or instructions.

[5], [6],
[49]

agreement), 0.78 for intent detection (substantial agreement),
and 0.87 for resolution status (near-perfect agreement).

The manual labelling process consists of the following
steps:

Step 1: Identifying software-related entities in the initial
question of conversations. Each annotator manually identifies
and labels software-related entities within the initial questions
of conversations. For each identified entity, the annotator
records the exact word representing the entity (e.g., Library)
along with the timestamp of its occurrence in the conversation.
This ensures precise tracking of where and when the entity
appears in the discussion.

Step 2: Categorizing intents in the initial question of
conversations. Each conversation is labelled based on its
initial question with one or more intents that indicate its

underlying purpose. The intent annotation follows pre-defined
categories (as shown in Table III) to maintain consistency.

Step 3: Annotating resolution status for conversations.
Unlike Stack Overflow, Discord or similar chatrooms do not
have a flag to indicate whether a question is resolved. To
address this, each annotator manually labels the resolution
status of each conversation. A conversation is labelled as
“resolved” if the original question receives a relevant answer,
and as “unresolved” if it does not.

D. Feature Extraction

Feature extraction helps analyze and understand whether a
conversation in the DISCO dataset can be resolved or not when
the initial question is posted. The extracted features capture
key aspects of the initial question, such as timing, content
quality, interaction levels, and the presence of specific entities
and intents. By linking these features to resolution outcomes,
we gain insights into what makes a question more likely to be
resolved. Feature extraction follows two steps:

Step 1: Labelling the DISCO dataset using SENIR. We
run SENIR on the entire dataset (illustrated in Fig. 1) which
consists of 29,243 conversations to label the entities, intents,
and resolution statuses for each conversation.

Step 2: Extracting features from the labelled DISCO
dataset. We engineer and extract a set of features from the la-
belled dataset and categorize them as temporal features, textual
& content features, interaction & engagement features, and
entity & intent-related features. Each category and its related
features are listed in Table IV and described below. Except
for entity & intent-related features, all extracted features are
collected from previous work [2], [4], [8], [12], [14], [19],
[26], [36], [45], [53], [55].

Temporal features. These features capture the timing as-
pects of the initial question, based on the hypothesis that
posting time may influence resolution likelihood. Specifically,
we include “weekday”, representing the day of the week the
question was asked, and “daytime”, indicating the hour of the
day the question was posted (ranging from 0 to 23 hours).

Textual & content features. This set of features is related
to the structure and content quality of the initial question.
The goal is to assess whether question clarity and readability
impact resolution, as these can directly affect user engagement
and the likelihood of achieving a resolution. For example, a
higher readability score may indicate that the question is easier
to understand. Features include “URLs count”, capturing the
number of URLs present in the question, and “code snippets”,
indicating whether the question contains code blocks.

Interaction & engagement features. These features focus
on the questioner’s activity, capturing how interaction and
engagement may influence resolution likelihood. Examples
include “active chatroom questioner”, which identifies whether
the questioner is an active participant in the chatroom (binary:
0 for inactive, 1 for active), and “questioner received response
ratio”, which measures the proportion of the questioner’s past
questions that have received responses.

Entity & intent-related features. These features leverage
the labelled outputs from SENIR to provide insights into
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TABLE IV
THE LIST OF FEATURES USED IN THE STUDY AND THEIR DESCRIPTIONS.

Category Feature Description Reference

Temporal Features Weekday Day of the week the question took place [2], [14]
Daytime Time of day the question occurred [14]

Textual &
Content Features

Readability CLI Readability score of the question text [12], [14], [55]
Text-Code Ratio Question Ratio of code snippets to regular text [36]
URLs Count Number of URLs mentioned [14], [53]
User Mentions Number of times users are mentioned [4], [53]
Code Snippets Presence of code blocks or snippets [14], [55]
Question Length Length of the initial question [8]

Interaction &
Engagement Features

Sentiment Sentiment of the initial question [19], [26]
Active Chatroom Questioner Indicator of whether the questioner is an active member [14], [36], [45]
Questioner Received Response Ratio Ratio of received responses to total questions asked [36], [45]

Entity &
Intent-Related
Features

Total Entities Count Total number of entities recognized
Unique Entities Count Number of unique entities
Entity Occurrences Frequency of each entity within the question
Intent Total Count Total count of identified intents
List of 7 Intents Specific intent categories
List of 28 Entities Specific software-related entities

the technical aspects of the initial question. For example,
“total entities count” represents the total number of recognized
entities in the question and “unique entities count” shows
the number of distinct entities present. Additionally, “entity
occurrences” measures how frequently entities appear within
the question.

III. RESULTS

In this section, we provide the motivation, approach, and
findings for each of our research questions.

A. RQ1: How effective is SENIR in labeling developer chat-
room conversations?

Motivation. Annotating chatroom conversations with rele-
vant entities and intents can enhance problem-solving and
knowledge sharing in SE communities like Discord. Pre-
cisely identifying key technical details can lead to higher-
quality responses. However, existing labelling approaches face
significant challenges. Traditional NER and intent detection
methods struggle with the informal, fragmented nature of
developer chatrooms, where multiple topics often overlap.
Manual labelling, while effective, is resource-intensive and
limits scalability.

To address these challenges, we explore the use of the LLM
to automate the labelling of developer chatroom conversations.
With strong contextual awareness, the LLM chosen by our
work may be able to better navigate informal discussions
compared to traditional methods. In this RQ, we evaluate the
effectiveness of the LLM in automatically labelling software-
related chatroom conversations. Specifically, we introduce
SENIR, an approach that leverages the LLM to detect and label
software-specific entities, user intents, and resolution status.
The labelled dataset provides a basis for further investigation
in RQ2 and RQ3.
Approach. We evaluate the labelling performance of SENIR
using the golden dataset (see Section II-C), which contains
400 manually annotated developer conversations. We compare

TABLE V
PERFORMANCE METRICS FOR ENTITY RECOGNITION, INTENT

IDENTIFICATION, AND RESOLUTION STATUS DETECTION.

Metric Entity (%) Intent (%) Resolution (%)

Accuracy 91 76 93
Precision 88 72 96
Recall 85 70 87
F-Score 86 71 89

labelling output from SENIR with manual labels using the
performance metrics Precision, Recall, F-score, and Accu-
racy. Precision measures the proportion of correctly predicted
positive instances out of all predicted positives, while Recall
measures the proportion of true positives out of all actual
positive instances. The F-score represents the harmonic mean
of Precision and Recall, balancing both metrics. Accuracy,
on the other hand, is the proportion of all correct predictions
(both true positives and true negatives) to the total number of
predictions [21].

To calculate the evaluation metrics, we map SENIR’s pre-
dictions and the golden labels into the confusion matrix cate-
gories: True Positive (TP), False Positive (FP), False Negative
(FN), and True Negative (TN).

The evaluation metrics are calculated as follows:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F-Score =
2× Precision × Recall

Precision + Recall
(3)

Accuracy =
TP + TN

TP + FP + FN + TN
(4)

The definition of each confusion matrix category depends
on the specific labelling task:
(1) Entity Recognition (Token-Level)
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• Golden labels: For each token in the initial question of
a conversation, the golden dataset indicates either a spe-
cific entity type (e.g., Programming Language, Error
Name) or non-entity.

• Predicted labels: SENIR assigns an entity type or non-
entity to each token.

• TP: SENIR correctly labels a token with the same entity
type as in the golden dataset.

• FP: SENIR assigns an entity type to a token that is labelled
as non-entity or a different entity type in the golden dataset.

• FN: SENIR fails to assign an entity type to a token that
should have one.

• TN: SENIR correctly labels a token as non-entity (or
correctly refrains from assigning a wrong entity type).

(2) Intent Detection (Conversation-Level, Multi-Label)
• Golden labels: Each conversation in the golden dataset may

have one or more intent labels (e.g., API Usage, Review,
Discrepancy) based on the initial question.

• Predicted labels: SENIR outputs a set of intents for each
conversation.

• TP: An intent predicted by SENIR matches one in the
golden labels.

• FP: An intent predicted by SENIR does not appear in the
golden labels.

• FN: An intent present in the golden labels is not detected
by SENIR.

• TN: An intent is correctly not predicted (i.e., it appears in
neither SENIR’s output nor the golden labels).

(3) Resolution Status (Conversation-Level, Single-Label)
• Golden label: Each conversation is labelled with a single

resolution outcome (i.e., “resolved” or “unresolved”).
• Predicted label: SENIR outputs exactly one resolution

outcome for each conversation.
• TP: SENIR correctly predicts the outcome as “resolved”

when the golden label is “resolved”.
• FP: SENIR predicts “resolved” when the golden label is

“unresolved”.
• FN: SENIR predicts “unresolved” when the golden label is

“resolved”.
• TN: SENIR correctly predicts “unresolved” when the

golden label is “unresolved”.

Results. SENIR can correctly label 91% of entities. Table V
summarizes of the performance metrics for each task, SENIR
achieves strong performance in labelling resolution status with
an F-score of 89%. For the NER and intent detection tasks,
SENIR also performs well with F-scores of 86% and 71%,
respectively. Although the recall values are slightly lower, the
precision and accuracy metrics remain robust, which indicates
that SENIR can accurately capture the software-specific enti-
ties and intents in developer conversations.

Our LLM-based approach shows strong performance
for concrete entities (e.g., Error Name, Library
Function), but lower performance for abstract ones
(e.g., Application). Concrete entities, such as Error
Name (94% accuracy) and Library Function enti-
ties (88% accuracy), are easier to detect likely due to
their well-defined context. In contrast, abstract terms like
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Fig. 4. Distribution of SENIR-labelled entities in the DISCO dataset.

Application achieve a lower accuracy of 81%. These
results suggest that entities grounded in concrete, well-defined
terms are easier for the model to identify compared to abstract
concepts. This observation aligns with previous findings by
Ye et al. [56], where the baseline approach also performs well
on programming languages but struggles with more nuanced
categories such as the “API category”.

Entities related to structured data (e.g., Version and
File Type) consistently achieve high precision and re-
call. Entities that represent structured information, such as
Version and File Type, consistently rank the highest in
terms of precision and recall (as shown in Fig. 4). In contrast,
entities such as Library and In Line Code show lower
performance, which indicates that these categories may be
more ambiguous or challenging for the model to detect in
informal chatroom conversations.
Programming Language is the most frequently rec-

ognized entity in developer conversations. Fig. 4 shows
the distribution of recognized entities, with Programming
Language appearing in 34% of the conversations. This
finding highlights the centrality of discussions surround-
ing programming languages in developer chatrooms. User
Variable and Application are the next most frequent
entities, indicating a significant focus on user-defined variables
and software applications.

Intent detection shows varied performance, indicating
differing levels of contextual complexity among intents.
Table V shows that certain intents, such as Review and
Errors, achieve high accuracy (89%), compared to more
abstract intents, such as Conceptual (57% accuracy). This
discrepancy suggests that intents that require deep contextual
understanding are more challenging for the model to capture
accurately. In some instances, errors occur when entities or
intents are used in unexpected contexts. For example, the
term ‘Go’ is misclassified in discussions about travel rather
than programming. This highlights a potential limitation in the
model’s ability to disambiguate between terms with multiple
interpretations, particularly in casual or off-topic conversa-
tions.

Developer conversations predominantly focus on learn-
ing new concepts and understanding complex ideas. Fig. 5
shows that Learning and Conceptual are the most common
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Fig. 5. Distribution of SENIR-labelled intents in the DISCO dataset.

intents in the dataset, representing 46% and 31% of all
conversations. This reflects the focus of technical discussions
on technical education and conceptual exploration. In contrast,
API Usage, the third most frequent intent (11%) highlights the
need for clarifications or advice on API functionalities.

Our LLM-based labelling approach shows strong agree-
ment with manual labels. Our approach achieves Cohen’s
Kappa scores of 0.84 for entity recognition, 0.78 for in-
tent detection, and 0.86 for resolution status. These scores
fall within the “substantial” (0.61–0.80) and the “perfect”
(0.81–1.00) agreement [34], indicating that SENIR reliably
captures key aspects of conversations. However, instances of
disagreement between annotators and the model often arise
due to conversational ambiguity. As the example shown below,
certain conversations could be labelled as either Learning
or API Usage, leading to different labels. Disagreement also
occurs when users use vague terminology in a particular devel-
opment community. These challenges highlight the difficulty
of intent detection in casual, context-shifting environments like
developer chatrooms.

• User 1: Hey folks, I’m confused about when to use async/await
over threading in Python. Any insights?

• User 2: Async is for concurrency, great for I/O-bound tasks.
Threading is more about parallelism.

• User 3: What’s your use case?
• User 1: I have a function that fetches data from multiple APIs.

Should I go with async or just use threads?
• User 4: If it’s API calls, async is usually better. Use ‘asyncio‘

and ‘aiohttp‘ for handling multiple requests.
• User 1: Got it! I’ll try that. Thanks!

Summary of RQ1

SENIR demonstrates high effectiveness in analyzing
developer chatroom conversations by accurately identi-
fying software-specific entities, intents, and resolution
statuses, with an F-score of 86% for entity recognition
and 89% for resolution status classification. Despite
these strengths, challenges remain in detecting certain
intents requiring deep contextual understanding, par-
ticularly for abstract concepts, highlighting areas for
future improvement.

B. RQ2: What features of the developer questions contribute
to their resolution outcomes?

Motivation. In RQ1, we propose an LLM-based approach to
label chatroom conversations with software-specific entities,
the intent of the question, and the resolution outcome of the
conversation. Building on this, we apply our approach to label
a large dataset of 29,243 conversations sourced from Discord.
This labelled dataset is used to further analyze the relationship
between the characteristics of questions and their associated
resolution outcomes. The goal of RQ2 is to investigate which
features of developer questions most significantly influence
their likelihood of being resolved. Our goal is to gain insights
into the factors that contribute to successful resolutions, as
well as those that may harm them, by training a model on the
question-derived features.
Approach. To address RQ2, we follow the steps listed below:

1. Labelling the Conversations: We use the approach from
RQ1 to label 29,243 conversations sourced from four distinct
Discord channels within the DISCO dataset (see Table I). Each
conversation is annotated with software-specific entities, the
intent of the question, and the resolution outcome. The reso-
lution outcome is used as the dependent variable in building
the prediction model.

2. Feature Extraction: For each conversation, we isolate
the initiating question and extract a comprehensive set of
features from the initial questions, as described in Section II-D.
These features include general attributes, such as question
length and sentiment, as well as features derived from the
labelling in Step 1, such as entities count in a given question.
Notably, the features pertain solely to the question itself. The
model is not trained on any features irrelevant to the initial
question as a whole. The feature set consists of 50 question-
related features, which are listed in Table IV.

3. Feature Processing: We first apply max-min normal-
ization to scale all features to a range of [0, 1]. Without
normalization, features with larger ranges (e.g., [-100, 100])
could disproportionately influence the model’s performance
compared to features with smaller ranges (e.g., [0, 10]). By
transforming all features into the same range, we avoid poten-
tial biases during model training. The normalization formula
is as follows:

XNormalized Value =
X −Xmin

Xmax −Xmin
∈ [0, 1]

Where Xmin and Xmax are the minimum and maximum
values of the feature, respectively.

After normalization, we perform a correlation and redun-
dancy analysis to identify the highly correlated and redundant
features.

Correlation refers to the degree to which two features are
related. Highly correlated features provide similar informa-
tion to the model, which can introduce instability in model
coefficients and reduce interpretability. We use Spearman’s
correlation coefficient to measure the degree of correlation
between features. Following the previous studies [37]–[39],
we consider a correlation coefficient threshold of 0.7 for the
correlation coefficient values to identify strong correlations.
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To visualize the correlation structure, we apply hierarchical
clustering, which requires a distance metric. We transform the
correlation values into a dissimilarity measure defined as:

distance = 1− correlation (5)

In this transformed space, highly correlated feature pairs
(correlation 0.7) have distances 0.3. We therefore set a cut-
off threshold of 0.3 on the (Fig. 6) x-axis of the dendrogram
and randomly remove one feature from each highly correlated
pair to ensure that we retain a diverse and representative set
of features.

Redundancy occurs when a feature does not provide unique
information and can be predicted using other features. To
detect redundancy, we compute the Variance Inflation Fac-
tor (VIF), a widely used metric that quantifies how much
a given feature is explained by other independent variables.
Following prior work [28], [41], we adopt a cut-off threshold
of 10, where VIF values above this level indicate substantial
redundancy. Features exceeding this threshold are excluded to
improve computational efficiency and model generalizability.

After applying both correlation and redundancy filtering,
we remove 15 highly correlated and redundant features:
Text-Code Ratio Question, User Mentions, Total Entities
Count, Unique Entities Count, Entity Occurrences, Sentiment,
License Intent Total Count, API Usage, Conceptual, Dis-
crepancy, Errors, Review, API Chance, and Learning. This
process reduces the feature space from 50 to 35 features while
maintaining key predictive information.

4. Model Training: The dataset consists of a total of 29,182
questions, with 22,748 labelled as “unresolved” (77.95%) and
6,434 labelled as “resolved” (22.05%). This class imbalance is
addressed through sampling strategies during model training.
To account for the variability of data sourced from different
chatrooms, we train a mixed-effect model that incorporates:
(i) fixed effects, which capture the influence of extracted
features, and (ii) random effects, which address variations
across chatrooms. To refine the model and prevent overfitting,
we employ the stepwise regression algorithm [58]. Starting
with an empty model, features are iteratively added based on
their contribution to predictive performance. Specifically, we
employ a stepwise feature selection approach, where features
are evaluated based on their impact on performance metrics,
such as the Akaike Information Criterion (AIC). Features
that significantly improve model fit and predictive power are
retained, while those with minimal or redundant contributions
are excluded. This process reduces the initial feature set to 20
impactful features, which are detailed in Table VII.

Given the class imbalance, we explore two sampling strate-
gies during training: (i) Random undersampling, where the
majority class is reduced to match the minority class, and
(ii) Oversampling using the Synthetic Minority Oversampling
Technique (SMOTE), which generates synthetic samples for
the minority class.

5. LLM Baseline (Prompt-Based Classification): As a
baseline for resolution prediction, we also prompt a general-
purpose LLM, specifically Mixtral 8x7B [27]. In a zero-shot
setting, we provide only the initial question to the LLM and
ask it to predict whether the question is likely to be “resolved”
or “unresolved”. An example of the prompt is shown below.

Prompt: You are an AI assistant who helps analyze software
engineering chatroom discussions. Your task is to determine whether
the following developer question will likely receive a resolved
answer based on its clarity, completeness, and technical details.
Instructions:
• Read the developer question carefully.
• Predict whether the question will be resolved (Yes) or not resolved

(No).
• Provide a confidence score between 0% and 100%, indicating

how sure you are about your prediction.
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TABLE VI
AUC VALUES OF THE MIXED-EFFECT MODELS FOR THE DIFFERENT

CONFIGURATIONS

Configuration 5-Fold CV 10-Fold CV Bootstrap

Random Undersampling 0.7544 0.7545 0.7531
Oversampling with SMOTE 0.7560 0.7558 0.7546

• Do not provide an explanation—only return the classification and
confidence score.

Input Format:
Question: I am using TensorFlow version 2.5 and encountering an
error during installation. How can I fix this?
Output Format (Strict JSON format):
{“resolution_status”: “Yes”, “confidence_score”: “82%”}

We then compare these baseline predictions (derived solely
from the initial question) to the ground-truth resolution labels,
which are obtained via an LLM-based method that has access
to the entire conversation (as explained in RQ1).

6. Model Evaluation: The trained mixed-effect model is
evaluated using the Area Under the Curve (AUC), which
measures the model’s ability to distinguish between resolved
and unresolved questions. To ensure a stable evaluation, we use
the following approaches: (i) 5-Fold Cross-Validation (CV),
where the dataset is split into 5 folds, and each fold is used as
a test set once; (ii) 10-Fold Cross-Validation (CV), which
follows the same approach except with 10 folds; and (iii)
Bootstrapping (100 iterations), where the dataset is repeat-
edly resampled with replacement to capture variability. Each
evaluation method is applied across both sampling strategies
(random undersampling and SMOTE).

In parallel, we also evaluate the LLM’s baseline predictions
to obtain an AUC value used for direct comparison.

7. Feature Importance Analysis: We conduct a feature
importance analysis to identify which features have significant
positive or negative impacts on the likelihood of resolution.
We examine the coefficients from both the final model and
the intermediary models at each step of the feature selection
process. By analyzing the changes in coefficients as new
features are added, we assess how each feature contributes
to the model incrementally. Positive coefficients indicate fea-
tures that increase the likelihood of resolution, while negative
coefficients indicate those that decrease it. This stepwise
examination ensures that the final set of features is robust and
their impact remains consistent throughout the process.

To assess the statistical significance of these coefficients,
we examine the associated z-values and p-values. The z-value
measures how many standard deviations the coefficient is from
zero under the null hypothesis (H0: The feature does not
affect the likelihood of question resolution), with higher z-
values indicating stronger evidence against the null hypothesis.
Features with p < 0.05 are considered statistically significant.
Results. The model demonstrates acceptable discrimina-
tion performance across all configurations, with AUC
values consistently falling within the range of 0.7 to
0.8. Table VI summarizes the AUC values for the tested
configurations, which include two sampling strategies (ran-
dom undersampling and oversampling with SMOTE) eval-

TABLE VII
MIXED-EFFECT MODEL RESULTS FOR RESOLUTION PREDICTION

Feature Coef. Std.Err. z P>|z| Sign. Rel.

Sentiment 0.705 0.044 15.912 0.000 *** ↗
User Name 0.097 0.017 5.745 0.000 *** ↗
URLs Count -0.298 0.077 -3.846 0.000 *** ↘
Application -0.033 0.015 -2.265 0.024 * ↘
Library -0.062 0.018 -3.472 0.001 ** ↘
Daytime -0.020 0.014 -1.475 0.140 ↘
Library Function 0.065 0.022 2.931 0.003 ** ↗
Weekday 0.018 0.012 1.482 0.138 ↗
UI Element -0.061 0.043 -1.415 0.157 ↘
Code Snippets -0.380 0.103 -3.705 0.000 *** ↘
Data Type 0.036 0.021 1.707 0.088 . ↗
Data Structure 0.042 0.018 2.350 0.019 * ↗
Readability CLI -0.347 0.216 -1.605 0.109 ↘
File Type -0.42 0.021 -1.941 0.052 . ↘
Keyboard Input 0.84 0.037 2.241 0.025 * ↗
Library Class 0.86 0.040 2.154 0.031 * ↗
Question Length -0.124 0.072 -1.716 0.086 . ↘
Organization -0.167 0.083 -2.012 0.044 * ↘
Specific Intent Presence -0.115 0.016 -6.976 0.000 *** ↘
HTML/XML Tag Name 0.124 0.069 1.782 0.075 . ↗

uated using three methodologies: 5-Fold CV, 10-Fold CV,
and Bootstrapping. Oversampling with SMOTE has a slight
advantage and achieves the highest AUC values across all
evaluation approaches, with an AUC of 0.7560 in 5-Fold
CV and 0.7558 in 10-Fold CV. The stable results across
all configurations provide confidence in the model’s ability
to distinguish between resolved and unresolved questions,
allowing us to proceed with analyzing feature importance to
understand the factors contributing to resolution outcomes.

Furthermore, when comparing these results to the LLM
baseline, we observe that the AUC values for the LLM across
different confidence scores remain consistently low, ranging
from 0.50 to 0.53, indicating that its predictions are akin to
random guessing. We conclude that the performance of the
baseline LLM falls well below the 0.70 to 0.80 range achieved
by the feature-based mixed effect model.

While certain SE entities provide helpful context to
drive resolution, others may introduce unnecessary com-
plexity or ambiguity. The subset of features representing
SE entities—denoted in capital letters—provides insights into
how the presence of specific entities influences question res-
olution, as shown in Table VII. These features are binary,
indicating whether a particular entity is present (1) or ab-
sent (0) in a question. Among these, Application (e.g.,
“Flask,” “PyCharm”), Library (e.g., “NumPy,” “React”),
and Code Snippets have a significant negative effect on
resolution likelihood (p < 0.05). For instance, questions
that include Code Snippets are negatively correlated with
resolution (z = −3.705, coefficient=-0.380), potentially in-
dicating that such questions might introduce complexity or
require additional context that impedes resolution. Similarly,
the presence of Application and Library entities ap-
pears to slightly detract from resolution outcomes, possi-
bly due to their broad or ambiguous nature. In contrast,
entities like Library Function (e.g., “numpy.mean(),”
“json.dumps()”) and Library Class (e.g., “DataFrame,”
“Button”) demonstrate a positive correlation with resolution
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(p < 0.05), suggesting that including specific, well-defined
technical elements increases the likelihood of resolution. For
example, the feature Library Function has a coefficient
of 0.065 (z = 2.931), indicating a modest but significant
positive relationship. This finding highlights the value of
technical specificity in driving resolution success.

Other features with a positive impact include Sentiment,
where a more positive tone significantly improves resolution
likelihood, and User Name, indicating that directly mention-
ing specific users could improve responsiveness. This result
confirms the findings by Ehsan et al. [14]. On the other hand,
URLs Count has a negative effect on resolution, indicating
that later excessive URLs may introduce complexity or reduce
focus, making questions harder to address effectively.

Summary of RQ2

The mixed-effect model demonstrates acceptable per-
formance in distinguishing resolved and unresolved
questions, with stable AUC values across all con-
figurations (0.7 to 0.8). Feature importance analy-
sis highlights that while specific SE entities (e.g.,
Library Function, Library Class) and pos-
itive sentiment improve resolution likelihood, elements
like excessive URLs, and entity mentions detract from
resolution.

C. RQ3: How do entities, intents, and their interactions im-
pact the resolution of developer questions?

Motivation. The quality and formulation of developer ques-
tions are critical for improving response rates and overall
quality of interactions. In RQ3, we aim to understand how
specific combinations of software-specific entities and intents
influence the question resolution. By providing insights into
which entities and intents lead to higher resolution rates, our
goal is to guide developers in crafting more effective questions,
thereby reducing the number of unanswered questions.
Approach. We study the interaction among software-specific
entities, intents, and the resolution of developer questions
through the following aspects:
1. Intent Success Rate Evaluation: To understand the overall
efficacy of different question types in eliciting responses, we
assess the success rate for each intent by calculating the
percentage of resolved questions within each intent category.
We investigate if there is a significant relationship between
the intent of the question and its resolution status. To evaluate
this, we use a Chi-Square test of independence [35], which
determines if there is an association between two categorical
variables. The test compares the observed frequencies (the
actual number of resolved and unresolved questions per intent)
to the expected frequencies (what would be expected if there
were no relationship). A large Chi-Square statistic indicates
that the observed and expected values differ significantly,
suggesting a relationship between the variables. Conversely,
a small Chi-Square statistic suggests little or no relationship.
The significance of the test is evaluated by the p-value, where
a small p-value (typically less than 0.05) indicates that the
observed relationship is unlikely due to chance.

TABLE VIII
RESOLUTION OUTCOME BY INTENT

Intent % Success # Success # Total

API Usage 33.6 1,845 5,497
API Change 26.2 81 309
Errors 25.6 519 2,024
Conceptual 23.7 3,535 14,924
Learning 22.9 5,053 22,112
Discrepancy 22.0 618 2,813
Review 18.8 36 192

Overall 21.9 6,412 29,243

2. Analysis of Entity Pairs: We analyze entity pairs, defined
as two entities appearing together in the initial question of a
conversation. For questions involving three or more entities, all
possible pairs are considered. For example, if a question con-
tains the entities Device, Application, and Library,
the resulting pairs are (Device, Application), (Device,
Library), and (Application, Library). This analysis
is motivated by our observation that around 75% of con-
versations involve at least two entities. The goal of this is
to understand how these relationships contribute to question
resolution. In addition, we examine the resolution success
rates of entity pairs across different intent categories in their
effectiveness. To ensure reliable results, we filter out pairs with
fewer than 10 occurrences.
Results. The success rates for the different intents vary
considerably from 18.8% to 33.6%, highlighting an overall
suboptimal rate of resolution across all intents. Table VIII
shows that API Usage (33.6%) and API Change (26.2%)
have the highest success rates, while Discrepancy (22%) and
Review (18.8%) are on the lower end. This points to potential
difficulties in addressing more complex or nuanced questions.
To further assess the relationship between intent and resolution
status, a Chi-Square test is conducted. The test yields a Chi-
Square statistic of 76.83 with 6 degrees of freedom and
a p-value of 1.61e−14. The large Chi-Square statistic, far
exceeding the critical threshold, and the small p-value strongly
indicate that the differences in resolution rates across intents
are statistically significant. This suggests that certain intents
are more likely to result in successful resolution than others,
reinforcing the need for better question formulation in lower-
performing categories like Discrepancy and Review.

Entity pair analysis reveals that certain combinations
are more effective in driving question resolution under spe-
cific intents. As shown in Table IX, for the API Change intent,
the pair (Data Structure, Output Block) achieves a
success rate of 75%, On the other hand, the pair (File Type,
Keyboard Input) yields 17.7% suggesting these entities
might be less useful in eliciting responses.

For the API Usage intent, the pair (Application, File
Type) has a success rate of 53.3%, showing that providing
specific application-related and file-related information is ben-
eficial. However, combinations involving the pair (Value,
Keyboard Input) yield only 5.6%, indicating their inef-
fectiveness in this context.

In the Learning intent, the pair (Programming
Language, Library) has a success rate of 53.9%,
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TABLE IX
ENTITY PAIR RESULTS (TOP 3 AND BOTTOM 3 BY SUCCESS RATE).

Intent Entity Pair % Succ # Total

Aggregate
Results
(All Intents)

Device, Library Variable 45.5 11
Version, Library Variable 41.7 12
Data Type, Library Variable 36.4 22

Application, User Class 10.0 20
User Variable, UI Element 8.4 154
User Class, Value 6.9 29

The following rows present entity pair results broken down by intent.

API Usage

Application, File Type 53.3 15
Operation System, User Variable 45.8 24
Data Structure, Library Function 45.1 51

Value, Keyboard Input 5.6 18
User Func Name, Keyboard Input 5.0 20
Value, Output Block 0.0 10

Conceptual

Data Structure, Library Variable 42.1 19
User Name, HTML/XML Tag Name 41.7 12
Version, Library Variable 41.7 12

User Func Name, Website 6.9 29
Algorithm, UI Element 6.3 16
User Variable, Website 5.6 36

Discrepancy

User Variable, Library Function 39.1 115
Library Class, Library Function 38.7 31
Application, File Type 38.5 26

Data Type, Keyboard Input 0.0 10
File Name, UI Element 0.0 11
User Func Name, Keyboard Input 0.0 21

Errors

Prog Lang, Library Function 63.6 11
Prog Lang, File Name 41.2 17
Prog Lang, File Type 33.3 12

Prog Lang, Error Name 27.3 11
Prog Lang, Version 14.3 14
Prog Lang, User Name 0.0 10

Learning

Prog Lang, Library 53.9 13
User Variable, User Func Name 50.0 10
Prog Lang, User Func Name 46.2 13

Prog Lang, Application 15.4 13
Prog Lang, Website 10.0 10
Prog Lang, User Name 0.0 10

Review

Device, Library Variable 40.0 10
Version, Data Structure 37.5 64
UI Element, HTML/XML Tag Name 36.8 38

File Name, Website 10.0 90
Application, User Func Name 9.1 154
User Variable, UI Element 8.9 124

API Change

Data Structure, Output Block 75.0 12
Algorithm, Error Name 66.7 12
Data Type, UI Element 63.6 11

File Type, Keyboard Input 17.7 34
Library, Website 17.1 35
Application, User Func Name 17.0 59

while combinations involving the pair (Programming
Language, User Name) results in a 0% success rate,
suggesting that providing detailed library information is much
more beneficial than including user-specific information.

Regarding the Discrepancy intent, we observe a shift
towards diagnostic-focused entities such as Library
Function and User Variable. However, combinations
involving the pair (UI Element, File Name) show lower
success rates, indicating that backend-related information
tends to be more effective for resolution.

Similarly, the Review intent tends to occur with entities
related to detailed codebase elements, such as Library
Variable, Version and UI Element, indicating that

these conversations often involve reviewing or resolving prob-
lems within specific parts of the codebase.

Our observations show that the SENIR-labelled entities
accurately capture the technical content of the questions and
reflect the associated intents, as initially intended.

Summary of RQ3

The analysis in RQ3 reveals that specific combinations
of software-specific entities and intents impact the
likelihood of question resolution. Dominant entities
such as Programming Language and Library
play a key role across multiple intents, while entities
like User Variable and UI Element are less
beneficial. Success rates vary considerably among in-
tents, with API Usage and API Change showing the
highest resolution rates, while Discrepancy and Review
show lower rates. The Chi-Square analysis confirms
that resolution rates significantly differ across intents,
suggesting that better question formulation is needed
for lower-performing categories.

IV. IMPLICATIONS

In this section, we discuss our findings and their pos-
sible implications for developers, chatroom platforms, and
researchers.

A. Implications for Developers

It is important to provide focused questions with specific
technical details. Our findings (Sections III-B and III-C)
reveal that including precise entities, such as Library
Function or Library Class, correlates with higher res-
olution rates, particularly for intents like Discrepancy and
Errors. Rather than relying on large CODE SNIPPETS or
abstract references (e.g., Application), developers should
pinpoint the exact function or class in question.

It is valuable to maintain a positive tone, tag specific
users, and avoid overloading with URLs. As highlighted in
Section III-B, questions formulated with a positive tone are
more likely to be resolved. Likewise, tagging specific users
(e.g., “@UserName”), when appropriate, increases visibility
and may improve the response rate. However, including too
many URLs can overload the conversation and detract from
the core question, which can potentially slow down or prevent
the resolution.

B. Implications for Chatroom Platforms

Chatroom platforms can benefit from offering struc-
tured question templates. Questions that specify concrete
entities and intents correlate with higher resolution rates (Sec-
tion III-C). Chatroom platforms can leverage these insights
by providing structured templates that prompt users to include
important technical details. For example, if a user indicates
they are dealing with an error, the platform could prompt them
to specify the Programming Language, Library, and
relevant Library Function, to help minimize ambiguity
of the questions.
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Chatroom platforms can benefit from integrating an ap-
proach like SENIR for automated tagging and highlighting.
As shown in Section III-A, SENIR effectively labels software-
specific entities and intents. Chatroom platforms could inte-
grate SENIR to automatically generate tags for new ques-
tions to draw attention to key entities (e.g., Programming
Language) and identify intents (e.g., API Usage). This
approach can enable developers to quickly assess a question’s
context and filter questions based on their expertise.

C. Implications for Researchers

Researchers can use SENIR to label other developer
conversation datasets. The results in Section III-A con-
firm that SENIR can reliably label developer conversations
with software-specific entities, intents, and resolution statuses.
While our study focuses on Discord, SENIR is generalizable
and can be applied to other platforms, such as GitHub Dis-
cussions.4 Researchers can use SENIR to investigate different
platforms and analyze how entities and intents influence res-
olution rates in various contexts.

Researchers can leverage SENIR to enhance chatbots in
developer chatrooms. SENIR’s entity, intent, and resolution
labels provide valuable signals for improving chatbot-based
assistance in chatrooms. For example, researchers can use
the resolution status to curate high-quality resolved ques-
tions for retrieval-augmented generation (RAG) [30]. This
enables chatbots to provide more reliable answers based on
past conversations. In addition, entities and intents can refine
retrieval strategies, techniques such as GraphRAG [20] can
build knowledge graphs to enhance retrieval by leveraging
labelled entities and intents.

V. RELATED WORK

In this section, we discuss related work about NER in
software engineering contexts, LLM applications in software
engineering tasks, and developer chatrooms and online forums.

A. NER in Software Engineering

NER has been widely studied in the software engineer-
ing domain for automatically identifying and categorizing
software-specific entities within text from various sources such
as source code, commit messages, documentation, and social
media content. Ye et al. [56] developed machine learning based
NER systems for software engineering social content. Their
approach demonstrates improved performance over rule based
systems by addressing entity ambiguity and informal language.
Similarly, Tabassum et al. [48] highlighted the importance of
domain-specific NER for understanding code-related discus-
sions. Their approach emphasizes the role of software-specific
categories like APIs, frameworks, and libraries.

Recent advancements leverage transformer models like
BERT for NER tasks, which have improved contextual un-
derstanding in software engineering texts. SoftNER [48], a
BERT-based model, achieved notable success in identifying

4https://docs.github.com/en/discussions

code tokens and software-related entities within Stack Over-
flow conversations. Das et al. [13] further explored zero-shot
NER techniques to recognize unseen entities, showcasing the
adaptability of pre-trained models in low-resource scenarios.
While these studies primarily focus on structured platforms
like Stack Overflow, our work targets the fragmented and
dynamic nature of developer chatrooms, such as Discord. By
leveraging LLMs and integrating intent detection alongside
NER, SENIR labels entities and intents to improve question
clarity and resolution outcomes in unstructured environments.

B. LLM Applications in Software Engineering

LLMs have shown significant potential in automating a
broad range of SE tasks, such as code generation, bug
detection, and documentation [16], [23]. Although several
studies focus on retrieving Q&A content from structured
platforms [57], researchers have also explored LLM-based
methods for tasks like requirements engineering [22], [42] and
code refinement [18]. Colavito et al. [11] further demonstrated
that GPT-like models can effectively classify GitHub issues,
reducing human workload in issue labelling.

Our work extends LLM applications to dynamic chatroom
environments by introducing automated labelling of entities
and intents and leverages the deep contextual understanding
of LLMs to enhance question clarity, enabling structured
analysis and actionable feedback for developers. This integra-
tion extends the applicability of LLMs to dynamic chatroom
environments, where conventional retrieval methods struggle.

C. Developer Chatrooms and Online Forums

Developer chatrooms (e.g., Slack, Discord) enable real-time
collaboration, but their informal style complicates message
analysis. Empirical studies have shown that missing details
often lead to unanswered questions, whereas user mentions
can boost engagement [14]. Subash et al. [47] introduced
the DISCO dataset to highlight the unique challenges of
disentangling and analyzing these multi-threaded discussions.
Similarly, El Mezouar et al. [15] and Shi et al. [44] found that
developer chatrooms contain valuable knowledge but remain
difficult to study due to their fluid format.

Lill et al. [32] found that reusing past chats and Q&A posts
to resolve new Discord questions is helpful in only 40% of
cases—partly because questions often lack clarity. Similarly,
Tufano et al. [51] examined how developers use LLMs like
ChatGPT to seek assistance in open-source projects, under-
scoring the growing influence of AI-based aids. While these
studies focus on overall chatroom behaviour, our work aims
to refine questions by jointly modelling NER, intent, and
resolution status within a unified framework. By extracting
software-specific entities and understanding the question’s
underlying purpose, we enable structured insights that pave
the way for higher-quality discussions and faster problem
resolutions.

VI. THREATS TO VALIDITY

In this section, we discuss the threats to validity of our study
about refining developer questions in chatrooms.

https://docs.github.com/en/discussions
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Construct Validity. We study only one LLM, Mixtral,
due to its larger token size compared to other open-source
models. However, this may limit the generalizability of our
results to other models. To mitigate this threat, we carefully
select a set of software-specific entities and intent categories
that are widely recognized within the software development
community. Two PhD students with expertise in software
engineering and natural language processing manually label
the dataset, ensuring that the entity and intent classification
schemes accurately reflect real-world scenarios.

Internal Validity. The primary threat is potential bias in
manual labelling and the influence of specific prompt designs
on the results. To address this, we employ a rigorous labelling
process with two annotators and calculate the inter-annotator
reliability using Cohen’s Kappa to reduce subjective bias.
Moreover, we test different prompt designs in a preliminary
study to select the most effective ones for our main experi-
ments.

External Validity. Since our study focuses on Discord
chatrooms, the results may not be directly applicable to other
software engineering platforms such as Stack Overflow or
GitHub Discussions. Furthermore, different communities may
have varying norms and communication styles that could
affect the performance of our approach. To mitigate this
threat, we analyze a large dataset spanning multiple software
engineering-related chatrooms to ensure our findings are not
specific to a single community. We also select chatrooms with
diverse programming topics to improve the applicability of
our results. While we acknowledge the diversity in software
development communities, we recommend further validation
in other environments to ensure broader generalizability.

VII. CONCLUSION

In this study, we present SENIR, an LLM-based approach
for labelling chatroom conversations with software-specific
named entities, intents, and resolution outcomes to understand
and refine developer questions. Through the lens of three
research questions, we demonstrate how these structured labels
deepen our understanding of developer Q&A in chatrooms and
guide improvements in question formulation. Our experiments
on 29,243 conversations from the DISCO dataset showed
SENIR’s robust performance for entity extraction (86% F-
score), intent detection (71% F-score), and resolution sta-
tus classification (89% F-score). Leveraging these labels,
we built predictive models of conversation resolution and
found that certain entity-intent combinations (e.g., Library
Function with Errors) increase success, while features like
excessive URLs and late posting times hinder resolution. A
Chi-Square analysis further confirmed significant differences
in resolution rates across various intents, suggesting actionable
paths for refining developer questions. Future research can
build on our study by exploring real-time feedback mech-
anisms or extending the approach to additional developer
support communities, thereby shaping more targeted, efficient,
and high-resolution Q&A.
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