
SwarmUpdate: Hierarchical Software Updates and Deep Learning
Model Patching for Heterogeneous UAV Swarms

Lin Geng
20lg5@queensu.ca
Queen’s University

Kingston, Ontario, Canada

Hao Li
hao.li@queensu.ca
Queen’s University

Kingston, Ontario, Canada

Sidney Givigi
sidney.givigi@queensu.ca

Queen’s University
Kingston, Ontario, Canada

Bram Adams
bram.adams@queensu.ca

Queen’s University
Kingston, Ontario, Canada

Abstract
Heterogeneous unmanned aerial vehicle (UAV) swarms consist of
dozens to hundreds of drones with different roles and varying hard-
ware and software requirements collaborating towards a shared
mission. While traditional approaches for synchronized software
updates assume swarms to be unstructured and homogeneous, the
heterogeneous nature of modern swarms and the emerging need of
drones to update their deep learning (perception) models with new
objectives or data as a mission unfolds, has made efficient software
update methods crucial for swarms to adapt to dynamic environ-
ments. To address these challenges, we introduce the SwarmUpdate
framework for software updates in heterogeneous UAV swarms,
composed of two key components: SwarmSync and SwarmModel-
Patch. SwarmSync is a hierarchical software update synchroniza-
tion strategy to distribute a software update to the right subset of
drones within a swarm, while SwarmModelPatch is a deep learning
model patching method that reduces the size of a (deep learning
model) update by only allowing some layers of the model to be
updated (freezing the other layers). In this paper, we systematically
evaluate the performance of SwarmSync through large-scale sim-
ulations in the ARGoS swarm simulator, comparing SwarmSync
to auction-based (SOUL) and gossip-based rebroadcasting (Gos-
sip) baselines, and SwarmModelPatch to a non-incremental model
patching strategy. Our results show that SwarmSync achieves up
to 78.3% faster update convergence compared to SOUL, and up to
47.7% faster convergence compared to Gossip, while maintaining
reasonable overhead, making it well-suited for large-scale swarm
deployments. Furthermore, our findings show that freezing seven
out of eight layers of the model can reduce the update size by 73.3%,
speeding up the update process by an average of 72.2% and reducing
transmission overhead by an average of 74.3%, at the expense of a
drop of 5.1% in overall accuracy (from 72.7% down to 67.6%).

CCS Concepts
• Software and its engineering; • Computing methodologies
→Machine learning;

Keywords
Heterogeneous UAV swarms, software update, model patching

1 Introduction
Autonomous unmanned aerial vehicle (UAV) swarms have emerged
as a promising technology for accomplishing complex missions
without relying on a central server [42]. The last decade, research
on swarms started focusing on heterogeneous UAV swarms com-
prising multiple UAV types, each designed with distinct roles and ca-
pabilities [32]. Compared to homogeneous swarms, heterogeneous
UAV swarms offer enhanced scalability and performance, capable
of addressing complex and diverse task requirements [9, 19, 45, 47].

An effective software update framework is crucial for swarms,
as they often operate in complex field work where direct connectiv-
ity is limited or unavailable, such as search-and-rescue or remote
surveillance missions, in mission-critical situations [51]. Recalling
an entire swarm just to update their control program is not feasible
in such settings. This is why prior research has proposed several
swarm software update strategies [1, 44]. For example, over-the-
air programming (OTAP) [5, 44] allows updates to homogeneous
swarms by rebroadcasting the update once it has been received by
an individual drone. Software updates in swarms face challenges,
such as bandwidth constraints, computational and storage con-
straints, and communication failures.

Unfortunately, existing software update strategies for swarms all
assume (1) homogeneous UAV swarms (i.e., all UAVs have identical
roles and update requirements), and (2) software updates compris-
ing typical code and/or data payloads instead of deep learning (DL)
model updates. Heterogeneous swarms introduce complications
such as multiple software versions and configurations, different
hardware and storage capabilities, and incompatibility with certain
software. Furthermore, UAVs increasingly adopt DL models, such as
convolutional neural networks (CNNs), for perception tasks, which
require updates during long-running missions to prevent concept
drift [14, 39]. Without reliable and efficient updates, and effective
update strategies able to deal with UAVs’ limited resources, UAVs
risk mission failure from outdated software or DL models.

To address these challenges, we introduce a framework tailored
to heterogeneous UAV swarms called SwarmUpdate, which has
two components: SwarmSync and SwarmModelPatch. Swarm-
Sync is a hierarchical software update synchronization strategy
designed for heterogeneous UAV swarms that categorizes UAVs
into sub-swarms to organize the distribution of software patches.
SwarmModelPatch is a DL model patching method that focuses on
reducing the size of a model update while minimizing degradation

ICSE’26, April 12–18, 2026, Rio de Janeiro, Brazil Lin Geng, Hao Li, Sidney Givigi, and Bram Adams

in model accuracy by selectively freezing model layers before tun-
ing. This paper also systematically evaluates SwarmUpdate through
comprehensive simulation experiments, comparing its performance
against existing baseline methods.

To illustrate the potential impact and importance of our study,
consider the following real-world scenario. A surveillance UAV
swarm is tasked with patrolling remote mountainous areas far
beyond the range of infrastructure support. When this swarm en-
counters sudden environmental changes (e.g., unexpected snowfall),
the DL models on the UAVs’ perception systems may become un-
reliable, severely affecting mission outcomes. The mission cannot
afford downtime for updates, yet adaptability is crucial. Instead, the
swarm could send a small number of UAVs back carrying any rele-
vant new data, notifying headquarters that an update is required
to maintain functionality, or communicate new data back through
peer-to-peer communication links between UAVs all the way back
to base. In response, headquarters trains the existing model with
the new data, then sends an “Updater” UAV back to the swarm,
responsible for distributing the updated model to any UAV that
requires an update using the SwarmSync synchronization approach.
Once a UAV receives the update, it leverages the SwarmModelPatch
model patching method to incrementally update its DL model.

The contributions of this paper are summarized as follows:
• SwarmSync: A software update synchronization strategy
for heterogeneous UAV swarms, leveraging the hierarchical
structure of swarms to distribute software patches.
• SwarmModelPatch: The first DL model patching method
designed for UAV swarms to train DL models to adapt to
new data.
• A replication package contains simulation environment se-
tups, scripts, data, and DL models at https://anonymous.
4open.science/r/SwarmUpdate-860D.

2 Related Work
Software Update Strategies. Existing research on software up-
date strategies primarily target homogeneous swarms [1, 44]. For
instance, Varadharajan et al. [44] propose an update protocol incor-
porating rebroadcasting and retransmission through requests, while
Al Blooshi and Han [1] focus on security threats when updating
a swarm. However, these studies do not address the complexities
inherent in updating heterogeneous swarms, where different UAVs
have distinct roles and diverse update requirements. Additionally,
traditional software patching usually replaces the older version,
which is unsuitable for resource-constrained UAV swarms with
DL models. SwarmUpdate only transmits the differences between
model versions. Moreover, by freezing earlier layers, SwarmUpdate
minimizes update size and bandwidth usage.

Since egalitarian, homogeneous swarms can be considered as a
Peer-to-Peer (P2P) system, swarm researchers have explored vari-
ous software update strategies for P2P systems [6]. For example, a
widely used protocol for P2P system software updates is Gossip-
based protocols, Busnel et al. [6] use gossip-based protocols for
distributing software updates for wireless sensor networks. How-
ever, gossip-based protocols often suffer from redundant messaging,
inconsistencies, and lower performance in sparse connections [34].

Deep Learning Model Updating. Updating deep learning (DL)
models is a critical challenge for updates in UAV swarms, as DL
models are usually large and bandwidth-consuming. Researchers
have proposed various techniques to mitigate the need for full re-
training, such as transfer learning [50] and lifelong learning [29, 30].
The idea of lifelong learning can be traced back to McCloskey and
Cohen [23] in 1989, which proposes training a model incrementally
on new data. Recently, Olewicki et al. [29] explore cost-efficient
lifelong learning techniques to reduce computational overhead com-
pared to retraining. To avoid catastrophic forgetting, a replay buffer
is used containing a portion of old training data. Transfer learn-
ing leverages pre-trained models for adaptation to new but related
tasks [50], lowering the computational resources needed to train.
However, these studies primarily focus on improving accuracy or
minimizing training resources [12, 17, 38], rather than reducing
the size of model updates. To the best of our knowledge, our paper
is the first to propose a DL model patching method that aims to
minimize model changes and hence to reduce model patch sizes.

While compression techniques like pruning [15] and quantiza-
tion [12, 37, 52] reduce overall model size and computational cost,
they do not specifically focus on minimizing differences between
model versions to optimize patch sizes. Pruning removes less impor-
tant neurons post-training, whereas quantization reduces memory
and computation by lowering weight precision (e.g., from 32-bit
float to 8-bit int). However, neither explicitly targets reducing the
model update size between versions.
Software Engineering for UAV Systems. Software engineering
researchers have studied different aspects of UAV systems such
as dynamic updates, robustness, and vulnerabilities. For example,
Nahabedian et al. [28] introduce an automated dynamic controller
synthesis approach to facilitate efficient updates of UAV controllers,
validated in UAV surveillance systems. To enhance the robustness of
UAV systems, Wang et al. [49] present a method for detecting anom-
alies from UAV logs, while Han et al. [13] implement a learning-
guided search framework to detect vulnerabilities in UAV configu-
ration modules. In addition, Jung et al. [18] propose a dedicated de-
bugging system for identifying and resolving configuration-related
bugs in UAV swarms.

Regarding system interpretability and safety, Ataiefard et al. [3]
propose a hybrid deep neural network method to infer internal
states of UAV autopilots by analyzing input-output signal data. To
ensure safety in UAV software, Liang et al. [22] empirically evalu-
ate the usage of bounding functions within open-source UAV soft-
ware frameworks to understand safety-critical concerns. Further-
more, Vierhauser et al. [48] introduce a framework for interlocking
Safety Assurance Cases (SACs) to improve operational account-
ability, where each UAV provides a pluggable SAC demonstrating
compliance with infrastructure-defined safety constraints.

None of the above work targets the unique needs and compli-
cations a heterogeneous UAV swarm faces to update a DL model
in-field, nor attempt to improve the efficiency of software updates
in UAV swarms.

3 SwarmUpdate
This section presents the problem definition of this study and the
two main components of SwarmUpdate : a hierarchical software

https://anonymous.4open.science/r/SwarmUpdate-860D
https://anonymous.4open.science/r/SwarmUpdate-860D

SwarmUpdate: Hierarchical Software Updates and Deep Learning Model Patching for Heterogeneous UAV Swarms ICSE’26, April 12–18, 2026, Rio de Janeiro, Brazil

Algorithm 1 SwarmSync’s Updater

1: Signal: Update is available
2: Wait until all leaders get in position ⊲ Until Time-out
3: for each packet in packets do
4: repeat
5: Transmit current packet to all leaders
6: until ACK received from all leaders ⊲ Until Time-out
7: end for
8: if Time-out then
9: Signal Reappoint Leader
10: Restart Update Process
11: end if
12: Wait until convergence signals received from all leaders

update synchronization strategy called SwarmSync and a DL model
patching technique called SwarmModelPatch.

3.1 Problem Definition
Consider a UAV swarm as a set 𝑆 = {𝑢𝑡11 , 𝑢

𝑡2
2 , . . . , 𝑢

𝑡𝑛
𝑛 }, where each

UAV𝑢
𝑡𝑖
𝑖
belongs to a type 𝑡𝑖 , runs software with version 𝑣𝑐𝑖 , and has a

given communication range 𝑟𝑖 . A software version 𝑣𝑐 is compatible
with UAVs whose type 𝑡 satisfies 𝑡 ∈ 𝑐 , where 𝑐 are the compatible
types for that software update, 𝑐 = {𝑡 𝑗 |𝑡 𝑗 𝑖𝑠 𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒 𝑤𝑖𝑡ℎ 𝑣𝑐 }.
UAVs incompatible with the update (i.e., 𝑡 ∉ 𝑐) are excluded from
receiving it. Let 𝑆𝑐 ⊆ 𝑆 represent the subset of UAVs compatible
with update 𝑣𝑐 . The goal is to distribute the latest software version
𝑣𝑐new to all compatible UAVs in 𝑆𝑐 , ensuring update coverage with
minimal latency and overhead.

A subset 𝑆𝑚 ⊆ 𝑆 of UAVs are equipped with an imaging sensor
whose input is fed to a DL CNN modelM to perform perception
tasks. Consider such a model M capable of classifying images
into classes (labels) 𝐿 = {𝑙1, 𝑙2 . . . 𝑙𝑛} with accuracy 𝐴𝑐𝑐 . When a
new class 𝑙𝑛+1 is introduced, the existing model must be updated
to a new model version M∗ capable of classification into 𝐿∗ =

{𝑙1, 𝑙2 . . . 𝑙𝑛, 𝑙𝑛+1} with accuracy 𝐴𝑐𝑐∗. Updating the existing model
fromM toM∗ generates a model patch P with size 𝑠 . The goal is
to minimize 𝑠 with minimal degradation in 𝐴𝑐𝑐∗.

3.2 SwarmSync
We propose SwarmSync to ensure efficient and reliable software
update synchronization for heterogeneous UAV swarms, basically
distributing a software update payload (whether it represents an
update to a newmodel versionM∗, or more traditional code or data
updates). SwarmSync is inspired by the scalable SWARM data repli-
cation method [25, 40], where a designated supernode distributes
data within server networks to other nodes with the same inter-
est. In SwarmSync, the swarm is divided into smaller sub-swarms
based on UAV types, where each sub-swarm consists of only one
type of UAVs 𝑡𝑖 and appoints a leader (either randomly or based
on predefined rules, such as the lowest UAV identifier ID). Note
that there might be multiple sub-swarms for a given UAV type
𝑡𝑖 , to avoid too unbalanced sub-swarms. Updates propagate via
a structured and hierarchical mechanism based on three distinct
roles: Updater, leader, and follower. The “Updater” UAV is the one
physically triggering the update process in close collaboration with

Algorithm 2 SwarmSync’s Leader
1: Receive signal from Updater
2: 𝑃𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 ← from signal, propagate signal to swarm
3: Move toward and surround Updater
4: Signal: leader in position
5: Receive packet from update
6: while #packets < 𝑃𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 do
7: Wait to receive the packet ⊲ Until Time-out
8: if packet received successfully then
9: Send ACK
10: end if
11: if Time-Out then
12: Abort Update process, signal others to also abort
13: end if
14: end while
15: Return to respective sub-swarm
16: for each packet in packets do
17: repeat
18: Transmit current packet to all followers
19: until ACK received from all followers ⊲ Until Time-out
20: if Time-out then
21: Remove Unresponsive follower from follower list
22: Continue Next packet
23: end if
24: end for
25: Signal: Notify Updater that sub-swarm has converged

Algorithm 3 SwarmSync’s Follower
1: Receive signal from Updater
2: 𝑃𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 ← from signal, propagate signal to neighbours
3: Remain idle until leader returns with update
4: while #packets < 𝑃𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 do
5: Wait to receive the packet ⊲ Until Time-out
6: if Time-out then
7: Signal Time-out, reappoint leader in the swarm
8: end if
9: if packet received successfully then
10: Send ACK
11: end if
12: end while
13: Apply Patch
14: Signal: Notify leader completion of update

the sub-swarms’ “leader” UAVs. The latter then distribute updates
to the other UAVs in their sub-swarm, i.e., the “follower” UAVs.

To ensure the guaranteed convergence of the swarm and pre-
vent false positives, SwarmSync uses the Transmission Control
Protocol (TCP) [7]. In TCP, every network packet sent requires an
acknowledgement (ACK) signal back before the sender moves on
to the next packet. In the absence of an ACK signal, the sender
keeps on re-sending the current packet. Since each leader tracks its
assigned followers, this method guarantees that all drones will re-
ceive all packets of the update, which is important as UAVs are often
used in mission-critical or safety-critical situations [51]. That said,
TCP’s reliance on ACK signals introduces a potential deadlock risk

ICSE’26, April 12–18, 2026, Rio de Janeiro, Brazil Lin Geng, Hao Li, Sidney Givigi, and Bram Adams

if a UAV fails to respond. To mitigate potential deadlocks, Swarm-
Sync implements a time-out mechanism: if a drone is unresponsive
within a given time frame,it is removed from the leader’s follower
list; if a leader is unresponsive, the sub-swarm will appoint a new
leader in its place. Although a time-out did not occur during the
simulation, preventative measures are essential for critical systems.

Updater. As presented in Algorithm 1, the Updater signals the
swarm that an update is available. This signal contains metadata
including version details and update packet size. The Updater then
waits for the leaders’ signal that indicates they are ready in position.
The Updater sequentially sends update packets and waits for ACKs
from all leaders before proceeding. After completing transmissions,
the Updater remains idle and waits for convergence signals from
the leaders. Once the Updater receives convergence signals from all
leaders, the swarm is declared to have converged. As the Updater
depends on the leaders in two scenarios: (1) waiting for all leaders
to get in position before sending an update, and (2) waiting for
ACK from all leaders before sending the next packet, a deadlock
could happen if a leader becomes unreachable, and thus time-out is
introduced for both scenarios. When a time-out happens, a signal is
sent out to the swarm, notifying that the leader has been removed
from the swarm. The sub-swarm of the missing leader then appoints
a new leader and restarts the update process.

Leader. As shown in Algorithm 2, when an update signal is
received, either from the Updater or from an UAV propagating the
update signal, the leader of each sub-swarm moves to the Updater’s
position and forms a predefined spatial formation (shown in Fig-
ure 3) to get in range to receive updates, temporarily leaving its
default position.

Once in position, leaders signal their readiness to receive updates.
They sequentially receive packets from the Updater and send ACK
for each packet. After receiving all packets, leaders return to their
respective sub-swarms, distributing the update packets to their
followers using the same reliable transfer (TCP) approach. Leaders
notify the Updater when all their followers have completed their
update. If a leader has no followers, the leader will immediately
notify the Updater that the sub-swarm has converged.

To prevent deadlocks, the leader also implements a time-out
mechanism, in two scenarios. First, if the leader times out while
receiving an update from the Updater, the leader assumes the Up-
dater has a failure and the update cannot be completed. Since only
the Updater possesses the update, the process is aborted, and an
abort signal is sent by the leader and propagated to other UAVs in
the swarm. Second, if the leader times out while waiting for ACKs
from the followers, any non-responding follower is removed from
the follower list and the update continues for remaining followers.

Follower. As the drones have only a limited communication
range 𝑟𝑖 , peer-to-peer propagation of data in a swarm is essential
in order to reach all UAVs. Shown in Algorithm 3, UAV followers
propagate the update signal obtained from their sub-swarm leader
to all their neighbors to expedite the signal. While the leaders are
getting the update from the Updater, the followers continue their
usual activities but remain within the communication range of
their leader’s last location (before moving to the Updater) until
the leader returns to the sub-swarm. The followers will send an
ACK for each received packet to their leader. Once all packets are
received, the followers will apply the patch and signal their leader

Input Convolutional
Layers

Classifier
(Convolutional/FNN)

Output

Figure 1: Structure of a typical CNN model.

Algorithm 4 SwarmModelPatch, referring to Figure 1

1: Input: Old CNN model M, Replay Buffer Size 𝛽 , Trainable
Layers 𝑥

2: Output: Updated modelM∗, Patch file P

3: Prepare training data:
4: D ← ReplayBuffer (old data) ∪ New Data
5: Load modelM
6: Reinitialize classifier layer C inM
7: Freeze all layers except:
8: - Last 𝑥 convolutional layer(s) ⊲ Adjust accordingly
9: - Classifier C
10: M∗ ← TrainM on D ⊲ Update trainable parameters
11: Initialize empty dictionary P
12: Iterate through parameters ofM∗:
13: for each parameter 𝑝 inM∗ do
14: if 𝑝 not inM then
15: P[𝑝] ← M∗ [𝑝]
16: end if
17: end for
18: Save P to patch file
19: Return Updated modelM∗, Patch file P

about completion. Since the follower depends on the leader to both
return and send update packets, a time-out mechanism is in place:
the follower assumes that the leader is unreachable and sends a
signal to reappoint a new leader for the sub-swarm.

In ideal scenarios, if |𝑆𝑐 | is the number of UAVs requiring updates,
and𝑁 is the maximum number of UAVs updated simultaneously per
cycle, where a cycle is the amount of time a drone require to update.
For swarm sizes |𝑆𝑐 | ≤ 𝑁 2, SwarmSync can complete the update
process in two update cycles. For swarms of size |𝑆𝑐 | ≤ 𝑁 , the
Updater will be appointed as the temporary leader and all followers
be updated directly by the Updater instead, completing the update
process in one update cycle. For |𝑆𝑐 | > 𝑁 2, subsub-swarms can be
created recursively to maintain the hierarchical structure of the
swarm, where each follower of the sub-swarm can lead their own
subsub-swarm and propagate the update. In practice, delays arising
from positional adjustments or network conditions may increase
this reported optimal complexity.

3.3 SwarmModelPatch
Once the payload of a software update is synchronized across all
UAVs in a swarm, it needs to be installed. For traditional code/data
updates, UAVs would typically “replace” the previous version’s
code/data. However, in the case of a deep learning model update,

SwarmUpdate: Hierarchical Software Updates and Deep Learning Model Patching for Heterogeneous UAV Swarms ICSE’26, April 12–18, 2026, Rio de Janeiro, Brazil

Algorithm 5 Apply Model Patch

1: Input: Base modelM, Patch file P
2: Output: Updated modelM∗

3: for each parameter 𝑝 in P do
4: if 𝑝 ∈ M and shape(M[𝑝]) = shape(P[𝑝]) then
5: M[𝑝] ← M[𝑝] + P[𝑝] ⊲ Update existing parameters
6: else
7: M[𝑝] ← P[𝑝] ⊲ Replace new or reshaped parameters
8: end if
9: end for
10: Return updated modelM∗

a naive “replace” strategy would require an entire new model ver-
sion to be re-trained/fine-tuned, then sent in the payload of an
update. This would not scale for typical swarm settings, where only
intermittent peer-to-peer communication is available.

To effectively deal with model updates and reduce the costs of
retraining from scratch, we propose SwarmModelPatch, which inte-
grates ideas from lifelong learning [29, 30], transfer learning [20, 27],
and incremental learning [36]. As shown in Algorithm 4, Swarm-
ModelPatch maintains a replay buffer holding representative sam-
ples from previously seen training data. When an environmental
change occurs, the model update incorporates both the replay buffer
and new data to prevent catastrophic forgetting [29] and enable
rapid adaptation.

A typical CNN model is shown in Figure 1, a CNN model usually
consists of some trainable convolutional layers, untrainable pooling
layers, and a classifier which can be either a feed-forward neural
network (FNN) or convolutional layer(s). The output of the classifier
is used to determine the classification results. To efficiently enable a
given model to classify data according to newly introduced classes,
SwarmModelPatch reinitializes the classifier layer [11, 41], while
partially freezing the remaining layers. Once a new model version
is trained, SwarmModelPatch generates a model patch representing
the differences between the new and old model versions, essentially
only containing the changed layers and metadata about these layers
(and those they attach to), while ignoring the frozen layers.

Algorithm 5 shows the algorithm of SwarmModelPatch for ap-
plying a patch. If a parameter 𝑝 in patch P has the same shape
as the corresponding parameter in modelM, it is added toM[𝑝].
However, if 𝑝 does not exist in modelM or has a different shape,
M[𝑝] is replaced with P[𝑝].

4 Empirical Evaluation Methodology
This section presents the methodology of the empirical evaluation
of our proposed software update framework for heterogeneous UAV
swarms. We investigate the following research questions (RQs):

RQ1. What is the update synchronization efficiency of Swarm-
Sync in a heterogeneous UAV swarm? The efficiency of
update synchronization plays a crucial role in determining
the optimal strategy for UAV swarms [44]. A slow update
process can lead to prolonged idling of the drones, hindering
their ability to accomplish their task. Ensuring an efficient
update process allows the UAV swarm to continue their

Algorithm 6 Gossip
1: Receive signal from Updater
2: 𝑃𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 ← from signal, propagate signal to neighbours
3: Receive update packets
4: if #packets < 𝑃𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 then ⊲ Packet loss detected
5: Request retransmission
6: Receive update packets
7: else
8: rebroadcasting← true
9: end if
10: if rebroadcasting then
11: for each packet in update do
12: Send packet
13: if request received then
14: Retransmit packets
15: else
16: Signal convergence
17: end if
18: end for
19: end if
20: if signal_converged received then
21: Pass it on
22: end if
23: if all nodes signal_converged then
24: Converged
25: end if

ongoing tasks, which directly impacts the swarm’s overall
effectiveness and operational strength.

RQ2. What is the transmission overhead of SwarmSync in
a heterogeneous UAV swarm? Overhead is another im-
portant factor in over-the-air software updates [4], directly
influencing system performance and efficiency. Overhead
consists of communication signals exchanged and the re-
sources consumed for packet transmission. Having exces-
sive overhead can increase computational resource usage,
consume more energy, and impact the speed of propagation.

RQ3. What is the trade-off between efficiency, overhead and
accuracy when updating a model with SwarmModel-
Patch? Transferring a DL model across a UAV swarm to
update to a new model version presents challenges, impact-
ing both the update efficiency and transmission overhead
consumption. High update size can cause high transmission
costs, which can lead to prolonged update times, excessive
overhead, and potential storage or communication bottle-
necks, damaging the UAV swarm’s performance.

4.1 Baseline Strategies
To empirically evaluate SwarmSync and SwarmModelPatch, we
select state-of-the-art baseline techniques. For SwarmSync, we use
a gossip-based rebroadcast baseline strategy and an auction-based
baseline strategy (both illustrated in Figure 2), while for Swarm-
ModelPatch we select a full-size update patch strategy.

4.1.1 Gossip-Based Rebroadcast Strategy. The gossip-based rebroad-
casting method follows the principles of epidemic dissemination,

ICSE’26, April 12–18, 2026, Rio de Janeiro, Brazil Lin Geng, Hao Li, Sidney Givigi, and Bram Adams

Updater
Leader (Footbot)
Leader (Eyebot)
Follower (Footbot)
Follower (Eyebot)

(a) SwarmSync

Updater
Eyebot (Updating)
Eyebot (Rebroadcasting)
Eyebot
Footbot

(b) Gossip

Updater
Eyebot (Updating)
Eyebot
Footbot

(c) SOUL

Figure 2: Swarm UAV formations and roles for SwarmSync and the two baseline software update synchronization strategies.

modelled by the classic Susceptible-Infected-Recovered (SIR) epi-
demic model [8]. This model enables information to spread across
the swarm with minimal time consumption, even in unreliable
UAV communication networks where packet loss and intermittent
connectivity are common.

Varadharajan et al. [44] uses such a gossip-based rebroadcasting
approach to update a homogeneous swarm. In this strategy, if a
receiver fails to compile the update due to incomplete packets, it
requests retransmission from the sender, which will resend all pack-
ets. Once a drone successfully receives all packets, it transitions
into an Updater, actively participating in further dissemination. The
new Updater broadcasts the received packets to its neighboring
drones, facilitating a decentralized propagation mechanism. How-
ever, as the Updaters are unaware of drones around them, they
cannot determine when an update is finished. Gossip-based strate-
gies can also generate high transmission overhead due to redundant
rebroadcasting, making them inefficient for bandwidth constrained
environments such as UAV networks. Additionally, these protocols
do not differentiate between heterogeneous UAV types, leading to
unnecessary information being propagated to drones that do not
require them.

AsGossip has already been implemented to update homogeneous
swarms, we adapt it for heterogeneous swarms by introducing a
simple modification. Specifically, drones that are not interested in
the update will pass on the update message but will not receive
or rebroadcast the update (as shown in Algorithm 6). A timeout
system similar is introduced: if none of the broadcasting drones
receive an update request in 20 control steps of the simulator (see
Section 4.2), the swarm is declared as converged.

4.1.2 Auction-Based Strategy (SOUL). Auction-based strategies op-
timize data distribution and overhead by allowing UAVs to bid for
content and only transmit necessary data. In this approach, the bid-
ders need to bid for content that the auctioneer will send out after
considering all the bids. While auction-based strategies minimize
redundant transmissions, they are similar to a client-server model.
As a result, when the number of bidders exceeds the maximum

Algorithm 7 SOUL’s Updater distributing update

1: Signal update is available
2: Signal update first group
3: Wait for signal UAVs are at location
4: Send update
5: while receiving requests do ⊲ From UAVs
6: Send requested packets ⊲ To UAVs
7: end while
8: Proceed to next group
9: if all groups are done then
10: Converged
11: end if

number of connections an auctioneer can handle, update times
increase more linearly.

SOUL [46] proposes an auction-based method for data sharing
in a swarm. In SOUL, there is an auctioneer that handles the data
blob, and it auctions the blob out for the swarm; any UAV in the
swarm with available data storage and computation will bid on
this blob. Based on the bidding, the auctioneer will decide how to
split and distribute the blob to UAVs inside the swarm. Auction-
based approaches allow updates to be distributed based on UAVs’
availability, reducing redundant transmissions.

To adapt SOUL for updating a heterogeneous swarm, we set the
Updater as the auctioneer and all UAVs as bidders. As shown in
Algorithm 7 and Algorithm 8, the Updater broadcasts the entire
update, then UAVs that lack certain packets request retransmission
via bidding. The Updater selectively rebroadcasts missing packets
based on the received bids. UAVs whose positions are outside the
Updater’s range move toward the Updater to receive the update. If
more than 𝑁 UAVs need the update, only 𝑁 will be allowed to go
to the Updater and update at a given time. In this case, the swarm
will form egalitarian groups and be updated group-by-group by the
Updater. Similar to SwarmSync, SOUL drones will also propagate
the update signal out to their neighbours. Since the Updater is
unaware of the status of UAVs, if no request signal is received

SwarmUpdate: Hierarchical Software Updates and Deep Learning Model Patching for Heterogeneous UAV Swarms ICSE’26, April 12–18, 2026, Rio de Janeiro, Brazil

Algorithm 8 SOUL’s UAV receiving update
1: Receive signal from Updater
2: 𝑃𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 ← from signal, propagate signal to neighbours
3: Wait for group’s turn
4: if updating this group then
5: Move to update location
6: Signal at_location
7: end if
8: Receive packets ⊲ From Updater
9: while #packets < 𝑃𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 do
10: Find missing packets in self storage
11: Request missing packets
12: Receive packets
13: end while
14: Signal complete
15: Move away from location

within a certain number of simulator control steps (e.g., 20), the
Updater assumes that the group has finished receiving the update.

4.1.3 Baseline DL Model Patching Method. No prior research has
studied DL model patching for swarms. Since SwarmModelPatch
offers adjustable model patch size by adjusting the number of frozen
layers, a SwarmModelPatch variant that would not freeze anymodel
layer during fine-tuning or re-training would be equivalent to fine-
tuning or re-training the entire model, followed by replacing the
previously installed model as a whole. Hence, we consider the
SwarmModelPatch variant with zero frozen layers as our baseline,
which we refer to as “full-size update”.

4.2 Experimental Design
4.2.1 Simulation Environment. Our empirical evaluation uses AR-
GoS [35] as the simulator to model swarm behaviour. ARGoS is a
widely-used C++ simulator for robotics designed specifically for
swarm simulation. While Gazebo [21] and Webots [24] are also
popular robotics simulators, ARGoS emphasizes multi-threaded
execution, making it particularly suited for scenarios involving
swarms with hundreds of UAVs. Furthermore, ARGoS was also
used to evaluate SOUL and Gossip. ARGoS uses “control steps” as
a measure of time and efficiency. In the default ARGoS configura-
tion, each control step is 100ms, which we will use in our study to
measure the efficiency of the synchronization and patch strategies.
Each simulation is ran 10 times and taken the average to ensure
the statical significance.

4.2.2 Update Configuration. Similar to earlier research on hetero-
geneous swarms in ARGoS [9, 10], we simulate a swarm consisting
of three types of UAVs, each expecting different types of software
updates: the Updater, Footbots, and Eyebots. Specifically, the Up-
dater manages the update and relays it into the swarm, the Eyebots
require a DL model update due to sudden weather changes (from
sunny to snowy), while the Footbot does not require any update.
These updates symbolize a heterogeneous swarm where each type
of UAV has its own update requirements. As the ARGoS built-in

Figure 3: 18 Drones surrounding the Updater.

“eye-bot”1 inherently cannot move, it does not represent a field-
work use case, we use the “foot-bot” implementation to simulate
a heterogeneous swarm composition, as “foot-bot” and “eye-bot”
both share the same communication characteristics. We experiment
with swarm sizes 𝑠 ∈ {20, 100, 200, 500} (excluding the Updater),
with an equal ratio of 1 : 1 between Footbots and Eyebots.

4.2.3 SqueezeNet Model. We choose SqueezeNet [16] as the DL
model for the Eyebots due to its lightweight architecture that mod-
ern drone hardware can handle [26]. For our evaluation, we select a
5-class weather classification task [2] to train themodel. The dataset
contains five classes: Sunny, Cloudy, Foggy, Rainy, and Snowy. To
simulate environmental concept drift, we exclude the Snowy class
from the original training data and consider Snowy as the new class
in our simulation. After training SqueezeNet on the remaining 4
classes, we apply SwarmModelPatch to generate a model patch for
a new model version that includes Snowy, with the replay buffer
keeping 40% of the old training data and combined with Snowy
to obtain the final training data. As the dataset did not provide a
balanced number of data per class nor was there inherent train/test
seperation, we performed data augmentation to upscale all other
classes to the class with the most data (Sunny with 6274 images),
then we split the data into train/test/val (0.7:0.15:0.15). Each model
was trained 3 times and the best model is kept to study. To clearly
analyze the impact of SwarmModelPatch on update size patterns
and times, we do not apply quantization and other compression
techniques that could further reduce patch sizes.

In SqueezeNet, convolutional layers are represented as “fire mod-
ules”, where each of the eight fire modules consists of multiple
layers. For this study, we treat each fire module as a convolutional
“layer” that could potentially be frozen. SqueezeNet also uses a con-
volutional layer as the classifier instead of a feed-forward neural
network (FNN); this layer is unfrozen by default.

4.2.4 Communication Range. As there are physical limitations for
the physical formation of drones (e.g., two drones cannot move
into the same location), and ARGoS used a default communication
length of 𝑟 = 3𝑚, we standardize the maximum number of drones
simultaneously updating around the Updater to 𝑁 = 18. This num-
ber is derived using a hexagonal distribution of drones and ARGoS’
communication range, as shown in Figure 3.

1https://pinciroli.net/api/dir_8bd2882cf9d14055c3b0116edcf0e192.php

https://pinciroli.net/api/dir_8bd2882cf9d14055c3b0116edcf0e192.php

ICSE’26, April 12–18, 2026, Rio de Janeiro, Brazil Lin Geng, Hao Li, Sidney Givigi, and Bram Adams

4.2.5 Communication Failure. We implement packet-loss scenar-
ios as an all-or-nothing model using the ARGoS default configura-
tion, meaning that if a packet is determined to be lost, the receiver
will receive nothing. We use the same packet failure rates 𝑓 ∈
{0, 0.25, 0.50, 0.75} as a previous study on homogeneous swarms [44].

4.2.6 Transmission Speed. While ARGoS’ default data transmis-
sion speed is 100 bytes/sec, this is an artificial constraint that does
not reflect real-world UAV communication speeds. We instead set a
transmission speed of 1 Mbps based on the Bitcraze Crazyradio 2.0
module,2 which is widely used in swarm robotics research. Since
the default ARGoS configuration defines one control step as 100 ms,
this means there are 10 control steps (i.e., 10 packets) per second.
To achieve a 1 Mbps transmission speed (equivalent to 125 kB per
second), we set the packet size to 12.5 kB, ensuring that 10 packets
per second result in the desired throughput.

4.2.7 Swarm Behaviour. In our simulation, the Updater will be
deployed and remain stationary at (0, 0), while all Footbots and
Eyebots are distributed randomly following a diffusion pattern
for surveillance [33]. By default, the topology of the swarm is the
cluster topology [34] and the maximum speed for the drones is
𝑉 = 1𝑚/𝑠 , aligning with previous research [43].

5 Results
5.1 RQ1: What is the update synchronization

efficiency of SwarmSync in a heterogeneous
UAV swarm?

Setup. To compare the efficiency of SwarmSync’s with the two
baseline update synchronization strategies, we use the baseline
DL model update method (“full-size update”) instead of Swarm-
ModelPatch (which is evaluated in RQ3). As such, model updates
correspond to 240 packets each. The efficiency of update synchro-
nization is measured as the number of control steps from the start of
the update synchronization until the swarm declares convergence.

5.1.1 Findings. SwarmSync achieves the fastest convergence
time across all strategies, outperforming SOUL by 78.3% and
Gossip by 47.7% on average for the largest swarm size of
500. Figure 4 presents the average time taken across all drones to
converge for varying swarm sizes. Compared to SOUL and Gos-
sip, SwarmSync demonstrates efficient update propagation. At the
largest swarm size 500, across all failure rates, SwarmSync com-
pletes the update on average 78.3% faster compared to SOUL, and
on average 47.7% faster compared to Gossip. These results rein-
force that SwarmSync is an efficient strategy for updating UAV
swarms. However, SwarmSync shows minor inefficiencies for small
swarms (e.g., 20), which is likely due to a limitation in ARGoS where
packets and their ACKs cannot be handled in the same control step,
leading to wasted control steps that would not occur in real-life
settings, this is discussed more in Section 7.

SwarmSync scales efficiently with increasing swarm sizes.
As the swarm size increases from 100 to 500 for failure rate 0.0,
the average number of control steps decreased from 9.7 to 1.9
per drone for SwarmSync, showing a reduction by a factor of 5.1.
This means that SwarmSync decreases the update synchronization
2https://www.bitcraze.io/products/crazyradio-2-0

0 100 200 300 400 500
Swarm Size

5

10

15

20

25

#C
on

tro
l S

te
ps

Failure rate = 0.0
SOUL
Gossip
SwarmSync

0 100 200 300 400 500
Swarm Size

10

20

30

40

50

60

#C
on

tro
l S

te
ps

Failure rate = 0.25
SOUL
Gossip
SwarmSync

0 100 200 300 400 500
Swarm Size

20

40

60

80

100

120

140

#C
on

tro
l S

te
ps

Failure rate = 0.50
SOUL
Gossip
SwarmSync

0 100 200 300 400 500
Swarm Size

50

100

150

200

250

300

#C
on

tro
l S

te
ps

Failure rate = 0.75
SOUL
Gossip
SwarmSync

Figure 4: The average time taken per drone for each synchro-
nization strategy to converge the swarm.

time per drone approximately inversely proportional to the size
increase; when the swarm size increased by a factor 5 times, the
time per drone decreases by a similar factor of 5.1, implying more
predictable and efficient scaling. SOUL exhibits higher convergence
times across all failure rates, showing a time per drone trend almost
parallel to the x-axis after it almost stabilizes after swarm size 100.
While Gossip performs better than SOUL, it still shows a higher
increase in convergence time as swarm sizes increase.

5.2 RQ2: What is the transmission overhead of
SwarmSync in a heterogeneous UAV swarm?

5.2.1 Setup. Using the same setup as RQ1, we evaluate the trans-
mission overhead of the updates, which is accounted for when a
drone sends out a packet (12.5 kb), and when a drone sends out a
communication signal (1 byte to 10 bytes), the average size of com-
munication signal is 5 bytes. We measure the total overhead from
the start of the update synchronization until the swarm converges
in Megabytes. The update payloads remain the same as for RQ1.

5.2.2 Findings. SwarmSync generates an average of 87.7%more
overhead than SOUL but only produces 19.7% overhead com-
pared to Gossip. Figure 5 shows, for both SwarmSync and SOUL,
that transmission overhead decreases as swarm size increases.While
SwarmSync produces an average of 87.7% more overhead than
SOUL across all failure rates and swarm sizes, the overhead for
both SOUL and SwarmSync presents a decreasing trend as swarm
size increases. In contrast, Gossip creates up to 8.3 MB of transmis-
sion overhead at a failure rate of 0.75, showing a 72.8% increase in
overhead compared to SwarmSync at a swarm size of 20.

Higher failure rates increase overhead across all three
strategies, at swarm size 20, SOUL and SwarmSync show sim-
ilar overhead growth (828.4% and 850.5%) as failure rate rises
from 0.0 to 0.75. As shown in Figure 5, the overhead for all strate-
gies grows with increased failure rates across different swarm size

https://www.bitcraze.io/products/crazyradio-2-0

SwarmUpdate: Hierarchical Software Updates and Deep Learning Model Patching for Heterogeneous UAV Swarms ICSE’26, April 12–18, 2026, Rio de Janeiro, Brazil

0 100 200 300 400 500
Swarm Size

0.0

0.5

1.0

1.5

2.0

2.5

Ov
er

he
ad

 (M
B)

Failure rate = 0.0

SOUL
Gossip
SwarmSync

0 100 200 300 400 500
Swarm Size

0.5

1.0

1.5

2.0

2.5

Ov
er

he
ad

 (M
B)

Failure rate = 0.25

SOUL
Gossip
SwarmSync

0 100 200 300 400 500
Swarm Size

1

2

3

4

Ov
er

he
ad

 (M
B)

Failure rate = 0.50

SOUL
Gossip
SwarmSync

0 100 200 300 400 500
Swarm Size

2

4

6

8

Ov
er

he
ad

 (M
B)

Failure rate = 0.75

SOUL
Gossip
SwarmSync

Figure 5: The average overhead per drone for each synchro-
nization strategy until convergence of the swarm.

settings. Notably, the relative overhead ratios among the strate-
gies remain similar as the failure rate grows. Both SwarmSync and
SOUL almost double in terms of overhead with each increase of the
failure rate. Interestingly, while the overhead of both SwarmSync
and SOUL grew by more than 100% from failure rate 0 to 0.25, the
overhead for Gossip remained relatively stable.

However, both SOUL and SwarmSyncmaintain a relatively stable
overhead increase (around 15 times) when swarm size grows from
20 to 500 across all failure rates. The overhead for Gossip does not
remain stable, with the same increase in swarm size, the increase
in overhead goes from around 40 times for failure rate 0 and 0.25,
to 62 times at failure rate 0.5, and 91 times at failure rate 0.75. This
is likely due to the formation of Gossip, where lower sizes have
multiple Updaters broadcasting to the same receivers, making the
receiver get the update with minimal packet loss. With the size
of the swarm increasing, the length between the Updater and the
drones on the edge of the swarm increases, creating the need to get
the update relayed through the entire swarm, growing in overhead.

5.3 RQ3: What is the trade-off between
efficiency, overhead and accuracy when
updating a model with SwarmModelPatch?

5.3.1 Setup. To evaluate SwarmModelPatch’s ability to reduce
model patch size while maintaining model accuracy, we progres-
sively freeze the model layers up to the last layer (“fire module” in
SqueezeNet), performing model updates for each number of frozen
layers and comparing the trade-off between accuracy and update
size with the “full-size update” baseline that was used in RQ1 and
RQ2, each model is trained with 10 epochs. In SqueezeNet, layers
closer to the classifier contain more weights, meaning that freezing
those layers reduces the update size of the patch more than the
other (more shallow) layers.

In particular, we select three configurations for our experiment:
freezing 4, 6, and 7 fire modules. These configurations produce

SwarmSync Gossip SOUL
0

1000

2000

3000

4000

5000

#C
on

tro
l S

te
ps

7/8 Layers Frozen (64 Packets)
6/8 Layers Frozen (128 Packets)
4/8 Layers Frozen (192 Packets)
Full-Sized Update (240 Packets)

Figure 6: The average number of control steps for swarm
convergence across varying patch sizes.

SwarmSync Gossip SOUL
0

100

200

300

400

500

Ov
er

he
ad

 (M
B)

7/8 Layers Frozen (64 Packets)
6/8 Layers Frozen (128 Packets)
4/8 Layers Frozen (192 Packets)
Full-Sized Update (240 Packets)

Figure 7: The average overhead for swarm convergence across
varying patch sizes.

balanced reductions in patch size, with the configuration freezing 4
fire modules yielding a patch size approximately 300% larger than
the one obtained by freezing 7 modules, and freezing 6 fire modules
resulting in a patch size approximately 200% larger than the 7-
module case. For example, the full-size update used in RQ1 and
RQ2 requires 240 packets for one model version update. Freezing 4
fire modules reduces the model patch size to 192 packets, whereas
freezing 6 and 7 fire modules further reduces the update sizes to
128 and 64 packets, respectively. We evaluate the updated models
based on two metrics: overall classification accuracy (across all
classes, including the new class data) and accuracy specifically on
the newly introduced class data.

In addition, we evaluate the efficiency and overhead of different
patch sizes in a swarm of 200 UAVs with a failure rate of 𝑓 = 0.25.
We select swarm size = 200 to get 100 drones to be updated aligning
with previous work [44]. We select 𝑓 = 0.25 because it is a common
failure rate for sophisticated UAV systems [31]. We measure the
efficiency and overhead with the same measurements as RQ1 and
RQ2. Similar to RQ1 and RQ2, we study all three strategies and the
impact of patch sizes on them.

5.3.2 Findings. SwarmModelPatch decreases patch size by up
to 73.3%, at the expense of a drop of 5.1% in overall accu-
racy (from 72.7%down to 67.6%). Table 1 presents the trade-off
in accuracy when applying different numbers of frozen layers to
SwarmModelPatch. As more layers get frozen, the overall accuracy

ICSE’26, April 12–18, 2026, Rio de Janeiro, Brazil Lin Geng, Hao Li, Sidney Givigi, and Bram Adams

Table 1: Results of SwarmModelPatch for different numbers
of frozen layers.

Model Acc
(%)

New Class
Acc (%)

Size
(MB)

Patch Size
(MB)

0/8 Frozen (Baseline) 72.7 72.3 2.9 2.9
4/8 Frozen 71.1 68.1 2.9 2.4
6/8 Frozen 68.6 67.4 2.9 1.5
7/8 Frozen 67.6 62.8 2.9 0.8

lowers, from 72.7% down to 67.6% at 7/8 layers frozen, while the size
of the patch decreases gradually from 2.9 MB down to 0.8 MB at 7/8
layers frozen. The new class (Snowy)accuracy decreased by 9.5%
from 72.3% down to 62.8% at 7/8 frozen layers, showing a heavier
impact than the overall accuracy.

SwarmModelPatch with frozen layers improves up to an
average 72.3% convergence speed at 7/8 layers frozen com-
pared to full-size updates. Figure 6 compares the number of
control steps required for different update sizes under a failure rate
of 0.25 with a swarm size of 200 (100 Eyebots and 100 Footbots).
The results indicate that leveraging SwarmModelPatch with frozen
layers improves convergence speed by an average of up to 72.3%,
with an error margin of 1%, compared to updating the whole model.

SwarmModelPatch with frozen layers has up to an average
74.3% lower transmission overhead at 7/8 layers frozen across
all strategies. Figure 7 presents the average transmission overhead
(in Megabytes) evaluated under the same parameters as Figure 6.
Similar to Figure 6, having a reduced size patch lowers the overhead
transmitted during the update. The overhead for both SOUL and
SwarmSync was reduced by up to 73.0%(72.9% and 73.0%) for the
7/8 frozen layer update, while the overhead for Gossip was reduced
by up to 76.7%, which is likely due to UAVs in Gossip receiving
packets from multiple senders at the same time.

6 Discussion
Selecting appropriate UAVs as leaders to improve overall
update efficiency. In our simulation, UAV leaders are randomly as-
signed inside the sub-swarm since all UAVs are identical. In practice,
having leaders equipped with more powerful physical capabilities
could enhance the performance of the swarm [45]. Practitioners
should select leaders based on key performance indicators such as
communication bandwidth, computational power, data storage ca-
pacity, and battery life. Prioritizing UAVs with enhanced resources
as leaders could reduce synchronization time and increase update
efficiency in real-world scenarios.

Future work should investigate security threats when up-
dating heterogeneous swarms. Our study leverages a structured,
hierarchical update mechanism designed for heterogeneous swarm
scenarios. However, the security threats during updates in these
heterogeneous settings remain unexplored. Although prior studies,
such as Al Blooshi and Han [1], have investigated security threats
of software updates for homogeneous UAV swarms, no studies ad-
dress security concerns specific to heterogeneous swarms. Software
update for heterogeneous swarms could introduce unique attack
vectors, where adversaries may target role-specific vulnerabilities.

Hence, future research should focus on: (1) understanding the vul-
nerabilities specific to heterogeneous swarms, and (2) proposing
approaches to enhance security (e.g., role-based authentication).

Future work should explore SwarmModelPatch in other
resource-constraint scenarios. The proposed model patching
algorithm, SwarmModelPatch, is specifically designed to tackle
resource constraints inherent in UAV swarms scenarios, where lim-
ited bandwidth, computational capability, and energy constraints
are major bottlenecks. SwarmModelPatch could be applied in other
resource-constrained domains, for example, the Internet of Things
(IoT) or edge computing platforms. Researchers should explore
adapting and evaluating SwarmModelPatch in these scenarios.

7 Threat to Validity
Internal Validity. ARGoS simulates time in discrete control steps,
but its implementation of message transmission and reception in-
troduces a limitation: the receiver can only read signals from the
last control step. When a packet is sent at time 𝑡 , the receiver can
only receive the packet at the next control step 𝑡 + 1. Hence, even
if the receiver would immediately send an ACK back to the sender,
the sender would receive the ACK at time 𝑡 + 2. In an optimized
control system, at failure rate 𝑓 = 0, when a packet is sent at time 𝑡 ,
the ACK packet will also be sent back at time 𝑡 , and the sender could
move on to the next packet at time 𝑡 + 1, yet ARGoS currently does
not allow this, making SwarmSync take longer in the simulation.
This effect does not affect the other strategies, as other strategies
are not reliant on a response before sending the next packet.

In our simulation, we used Footbots and Eyebots to model a
heterogeneous UAV swarm, as this is a common setup in ARGoS for
such studies. However, this choice may not fully reflect real-world
heterogeneous swarm configurations. We maintained an equal ratio
of Footbots and Eyebots, though practical applications may vary.
Additionally, in ARGoS, we represented the drones’ communication
range as a circular area, whereas in real-world scenarios, this range
is typically more spherical.
External Validity. In the simulation, it is assumed that all drones
are connected to the swarm and that each drone has at least one re-
lay path to receive information. While this is a common assumption
for simulation [34], depending on the situation, this assumption
might not hold true for real-world use cases.

In addition, the packet loss is modelled as an all-or-nothing
drop. In real-world settings, this is likely not the case. Preventative
measures such as hashing should be used to confirm the integrity of
the packet. If hashing fails for a packet, then the packet is declared
as corrupted, and should be requested again as if it was missing.
We also acknowledge that in real-world implementations, a static
1Mb/s transfer speed is not realistic, adaptive bitrate selection may
be needed based on interference and range limitations.

We evaluated SwarmModelPatch using SqueezeNet on the 5-class
weather classification dataset [2]. Note that the trend of model per-
formance observed with different numbers of frozen layers may dif-
fer when applying SwarmModelPath to other DLmodels or datasets.

SwarmUpdate: Hierarchical Software Updates and Deep Learning Model Patching for Heterogeneous UAV Swarms ICSE’26, April 12–18, 2026, Rio de Janeiro, Brazil

8 Conclusion
This study presents SwarmUpdate, the first framework for software
updates in heterogeneous UAV swarms, comprising the Swarm-
Sync update synchronization approach and SwarmModelPatch DL
model patching approach. We empirically evaluated SwarmSync by
comparing it against two baseline update synchronization strate-
gies (SOUL and Gossip) and one baseline model update approach
(full-size update) in heterogeneous swarm simulations. Our results
show that SwarmSync is the most efficient and scalable out of
the three synchronization strategies, achieving up to 78.3% faster
convergence times than SOUL and 47.7% faster convergence than
Gossip, while maintaining a reasonable overhead of 19.7% com-
pared to Gossip. In addition, our findings confirm the viability of
incremental model updates using SwarmModelPatch, showing how
it can reduce update time and overhead by up to 72.3% and 74.3%,
respectively, without substantially compromising model accuracy.

This research lays a foundation for future studies on software
update frameworks for heterogeneous swarm systems, enhancing
their reliability and effectiveness. As UAV technology continues
to advance, ensuring robust, efficient, and scalable updates will be
crucial for mission-critical and large-scale UAV deployments (e.g.,
humanitarian and surveillance missions).

9 Acknowledgements
We extend our gratitude to Vivek Shankar Varadharajan for his
invaluable support in providing the initial guidelines and source
codes for [44, 46] that contributed to this work.

References
[1] Shamma Al Blooshi and Kyusuk Han. 2022. A study on employing UPTANE for

secure software update OTA in drone environments. In 2022 IEEE international
conference on omni-layer intelligent systems (COINS). IEEE, 1–6.

[2] Ammar Alfaifi. [n. d.]. 5-class weather status image classification. https://www.
kaggle.com/datasets/ammaralfaifi/5class-weather-status-image-classification

[3] Foozhan Ataiefard, Mohammad Jafar Mashhadi, Hadi Hemmati, and Neil Walkin-
shaw. 2022. Deep State Inference: Toward Behavioral Model Inference of Black-
Box Software Systems. IEEE Transactions on Software Engineering 48, 12 (2022),
4857–4872. doi:10.1109/TSE.2021.3128820

[4] Jan Bauwens, Peter Ruckebusch, Spilios Giannoulis, Ingrid Moerman, and Eli De
Poorter. 2020. Over-the-Air Software Updates in the Internet of Things: An
Overview of Key Principles. IEEE Communications Magazine 58, 2 (2020), 35–41.
doi:10.1109/MCOM.001.1900125

[5] Stephen Brown and Cormac J Sreenan. 2013. Software updating in wireless
sensor networks: A survey and lacunae. Journal of Sensor and Actuator Networks
2, 4 (2013), 717–760.

[6] Yann Busnel, Marin Bertier, Eric Fleury, and Anne-Marie Kermarrec. 2007. Gcp:
Gossip-based code propagation for large-scale mobile wireless sensor networks.
arXiv preprint arXiv:0707.3717 (2007).

[7] Vinton Cerf and Robert Kahn. 1974. A protocol for packet network intercommu-
nication. IEEE Transactions on communications 22, 5 (1974), 637–648.

[8] Daryl J Daley and David G Kendall. 1964. Epidemics and rumours. Nature 204,
4963 (1964), 1118–1118.

[9] Frederick Ducatelle, Gianni A Di Caro, and Luca M Gambardella. 2010. Coopera-
tive self-organization in a heterogeneous swarm robotic system. In Proceedings
of the 12th annual conference on Genetic and evolutionary computation. 87–94.

[10] Frederick Ducatelle, Gianni A Di Caro, Carlo Pinciroli, and Luca M Gambardella.
2011. Self-organized cooperation between robotic swarms. Swarm Intelligence 5
(2011), 73–96.

[11] Yaël Frégier and Jean-Baptiste Gouray. 2021. Mind2Mind: transfer learning for
GANs. In Geometric Science of Information: 5th International Conference, GSI 2021,
Paris, France, July 21–23, 2021, Proceedings 5. Springer, 851–859.

[12] Karan Goel, Albert Gu, Yixuan Li, and Christopher Ré. 2020. Model patching:
Closing the subgroup performance gap with data augmentation. arXiv preprint
arXiv:2008.06775 (2020).

[13] Ruidong Han, Chao Yang, Siqi Ma, JiangFeng Ma, Cong Sun, Juanru Li, and
Elisa Bertino. 2022. Control parameters considered harmful: detecting range

specification bugs in drone configuration modules via learning-guided search. In
Proceedings of the 44th International Conference on Software Engineering (Pitts-
burgh, Pennsylvania) (ICSE ’22). Association for Computing Machinery, New
York, NY, USA, 462–473. doi:10.1145/3510003.3510084

[14] Manzoor Ahmed Hashmani, Syed Muslim Jameel, Hitham Alhussain, Mobashar
Rehman, and Arif Budiman. 2019. Accuracy performance degradation in image
classification models due to concept drift. International Journal of Advanced
Computer Science and Applications 10, 5 (2019), 422–425.

[15] Yang He and Lingao Xiao. 2023. Structured pruning for deep convolutional
neural networks: A survey. IEEE transactions on pattern analysis and machine
intelligence 46, 5 (2023), 2900–2919.

[16] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J
Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level accuracy with 50x
fewer parameters and< 0.5 MBmodel size. arXiv preprint arXiv:1602.07360 (2016).

[17] Gabriel Ilharco, Mitchell Wortsman, Samir Yitzhak Gadre, Shuran Song, Han-
naneh Hajishirzi, Simon Kornblith, Ali Farhadi, and Ludwig Schmidt. 2022. Patch-
ing open-vocabulary models by interpolating weights. Advances in Neural Infor-
mation Processing Systems 35 (2022), 29262–29277.

[18] Chijung Jung, Ali Ahad, Jinho Jung, Sebastian Elbaum, and Yonghwi Kwon. 2021.
Swarmbug: debugging configuration bugs in swarm robotics. In Proceedings
of the 29th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (Athens, Greece)
(ESEC/FSE 2021). Association for Computing Machinery, New York, NY, USA,
868–880. doi:10.1145/3468264.3468601

[19] Gal A Kaminka and Yinon Douchan. 2025. Heterogeneous foraging swarms can
be better. Frontiers in Robotics and AI 11 (2025), 1426282.

[20] Andrej Karpathy, Justin Johnson, and Fei-Fei Li. [n. d.]. Transfer Learning and
Fine-tuning Convolutional Neural Networks. https://cs231n.github.io/transfer-
learning/.

[21] Nathan Koenig and AndrewHoward. 2004. Design and Use Paradigms for Gazebo,
An Open-Source Multi-Robot Simulator. In IEEE/RSJ International Conference on
Intelligent Robots and Systems. Sendai, Japan, 2149–2154.

[22] Xiaozhou Liang, John Henry Burns, Joseph Sanchez, Karthik Dantu, Lukasz
Ziarek, and Yu David Liu. 2021. Understanding Bounding Functions in Safety-
Critical UAV Software. In 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE). 1311–1322. doi:10.1109/ICSE43902.2021.00119

[23] M McCloskey and NJ Cohen. 1989. Catastrophic interference in connectionist
networks: the sequential learning problem. Psychol Learn Motiv 24: 109–165.

[24] O. Michel. 2004. Webots: Professional Mobile Robot Simulation. Journal of
Advanced Robotics Systems 1, 1 (2004), 39–42. http://www.ars-journal.com/
International-Journal-of-Advanced-Robotic-Systems/Volume-1/39-42.pdf

[25] Behnaz Mohammadi and Nima Jafari Navimipour. 2019. Data replication mech-
anisms in the peer-to-peer networks. International Journal of Communication
Systems 32, 14 (2019), e3996.

[26] Minu MS, Subashka Ramesh SS, et al. 2022. Optimal Squeeze Net with Deep
Neural Network-Based Arial Image Classification Model in Unmanned Aerial
Vehicles. Traitement du Signal 39, 1 (2022).

[27] Derrick Mwiti. [n. d.]. Transfer Learning Guide: A Practical Tutorial With Ex-
amples for Images and Text in Keras. https://neptune.ai/blog/transfer-learning-
guide-examples-for-images-and-text-in-keras.

[28] Leandro Nahabedian, Victor Braberman, Nicolás D’Ippolito, Shinichi Honiden,
Jeff Kramer, Kenji Tei, and Sebastián Uchitel. 2020. Dynamic Update of Discrete
Event Controllers. IEEE Transactions on Software Engineering 46, 11 (2020), 1220–
1240. doi:10.1109/TSE.2018.2876843

[29] Doriane Olewicki, Sarra Habchi, Mathieu Nayrolles, Mojtaba Faramarzi, Sarath
Chandar, and Bram Adams. 2024. On the Costs and Benefits of Adopting Lifelong
Learning for Software Analytics-Empirical Study on Brown Build and Risk Predic-
tion. In Proceedings of the 46th International Conference on Software Engineering:
Software Engineering in Practice. 275–286.

[30] German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan
Wermter. 2019. Continual lifelong learning with neural networks: A review.
Neural networks 113 (2019), 54–71.

[31] Enrico Petritoli, Fabio Leccese, and Lorenzo Ciani. 2018. Reliability degradation,
preventive and corrective maintenance of UAV systems. In 2018 5th IEEE Interna-
tional Workshop on Metrology for AeroSpace (MetroAeroSpace). IEEE, 430–434.

[32] Carlo Pinciroli and Giovanni Beltrame. 2016. Buzz: An extensible program-
ming language for heterogeneous swarm robotics. In 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 3794–3800.

[33] Carlo Pinciroli and contributors. 2015. ARGOS3 Examples. https://github.com/
ilpincy/argos3-examples

[34] Carlo Pinciroli, Adam Lee-Brown, and Giovanni Beltrame. 2016. A tuple space
for data sharing in robot swarms. (2016).

[35] Carlo Pinciroli, Vito Trianni, Rehan O’Grady, Giovanni Pini, Arne Brutschy,
Manuele Brambilla, Nithin Mathews, Eliseo Ferrante, Gianni Di Caro, Frederick
Ducatelle, Mauro Birattari, Luca Maria Gambardella, and Marco Dorigo. 2012.
ARGoS: a modular, parallel, multi-engine simulator for multi-robot systems.
Swarm Intell. 6, 4 (Dec. 2012), 271–295.

https://www.kaggle.com/datasets/ammaralfaifi/5class-weather-status-image-classification
https://www.kaggle.com/datasets/ammaralfaifi/5class-weather-status-image-classification
https://doi.org/10.1109/TSE.2021.3128820
https://doi.org/10.1109/MCOM.001.1900125
https://doi.org/10.1145/3510003.3510084
https://doi.org/10.1145/3468264.3468601
https://cs231n.github.io/transfer-learning/
https://cs231n.github.io/transfer-learning/
https://doi.org/10.1109/ICSE43902.2021.00119
http://www.ars-journal.com/International-Journal-of- Advanced-Robotic-Systems/Volume-1/39-42.pdf
http://www.ars-journal.com/International-Journal-of- Advanced-Robotic-Systems/Volume-1/39-42.pdf
https://neptune.ai/blog/transfer-learning-guide-examples-for-images-and-text-in-keras
https://neptune.ai/blog/transfer-learning-guide-examples-for-images-and-text-in-keras
https://doi.org/10.1109/TSE.2018.2876843
https://github.com/ilpincy/argos3-examples
https://github.com/ilpincy/argos3-examples

ICSE’26, April 12–18, 2026, Rio de Janeiro, Brazil Lin Geng, Hao Li, Sidney Givigi, and Bram Adams

[36] Robi Polikar, Lalita Upda, Satish S Upda, and Vasant Honavar. 2001. Learn++: An
incremental learning algorithm for supervised neural networks. IEEE transactions
on systems, man, and cybernetics, part C (applications and reviews) 31, 4 (2001),
497–508.

[37] Babak Rokh, Ali Azarpeyvand, andAlireza Khanteymoori. 2023. A comprehensive
survey on model quantization for deep neural networks in image classification.
ACM Transactions on Intelligent Systems and Technology 14, 6 (2023), 1–50.

[38] Sara Romiti, Christopher Inskip, Viktoriia Sharmanska, and Novi Quadrianto.
2022. Realpatch: A statistical matching framework for model patching with real
samples. In European Conference on Computer Vision. Springer, 146–162.

[39] Danilo Sato, Arif Wider, and Christoph Windheuser. 2019. Continuous delivery
for machine learning: Automating the end-to-end lifecycle of machine learning
applications. Martin Fowler (2019).

[40] Haiying Shen, Guoxin Liu, and Harrison Chandler. 2015. Swarm Intelligence
Based File Replication and Consistency Maintenance in Structured P2P File
Sharing Systems. IEEE Trans. Comput. 64, 10 (2015), 2953–2967. doi:10.1109/TC.
2015.2389845

[41] Zhiqiang Shen, Zechun Liu, Jie Qin, Marios Savvides, and Kwang-Ting Cheng.
2021. Partial is better than all: Revisiting fine-tuning strategy for few-shot
learning. In Proceedings of the AAAI conference on artificial intelligence, Vol. 35.
9594–9602.

[42] David St-Onge, Vivek Shankar Varadharajan, Ivan Švogor, and Giovanni Beltrame.
2020. From design to deployment: decentralized coordination of heterogeneous
robotic teams. Frontiers in Robotics and AI 7 (2020), 51.

[43] Daniel H Stolfi and Grégoire Danoy. 2024. An ARGoS plug-in for the Crazyflie
drone. arXiv preprint arXiv:2401.16948 (2024).

[44] Vivek Shankar Varadharajan, David St Onge, Christian Guß, and Giovanni Bel-
trame. 2018. Over-the-Air Updates for Robotic Swarms. IEEE Software 35, 2

(2018), 44–50. doi:10.1109/MS.2018.111095718
[45] Vivek Shankar Varadharajan, Karthik Soma, Sepand Dyanatkar, Pierre-Yves La-

joie, and Giovanni Beltrame. 2024. Hierarchies define the scalability of robot
swarms. arXiv preprint arXiv:2405.02417 (2024).

[46] Vivek Shankar Varadharajan, David St-Onge, Bram Adams, and Giovanni Bel-
trame. 2020. Soul: Data sharing for robot swarms. Autonomous Robots 44, 3 (2020),
377–394.

[47] Vivek Shankar Varadharajan, David St-Onge, Bram Adams, and Giovanni Bel-
trame. 2020. Swarm relays: Distributed self-healing ground-and-air connectivity
chains. IEEE Robotics and Automation Letters 5, 4 (2020), 5347–5354.

[48] Michael Vierhauser, Sean Bayley, Jane Wyngaard, Wandi Xiong, Jinghui Cheng,
Joshua Huseman, Robyn Lutz, and Jane Cleland-Huang. 2021. Interlocking Safety
Cases for UnmannedAutonomous Systems in SharedAirspaces. IEEE Transactions
on Software Engineering 47, 5 (2021), 899–918. doi:10.1109/TSE.2019.2907595

[49] Dinghua Wang, Shuqing Li, Guanping Xiao, Yepang Liu, Yulei Sui, Pinjia He,
and Michael R. Lyu. 2024. An Exploratory Investigation of Log Anomalies in
Unmanned Aerial Vehicles. In Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering (Lisbon, Portugal) (ICSE ’24). Association for
Computing Machinery, New York, NY, USA, Article 210, 13 pages. doi:10.1145/
3597503.3639186

[50] Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. 2016. A survey of
transfer learning. Journal of Big data 3 (2016), 1–40.

[51] Liudong Xing and Barry W Johnson. 2022. Reliability theory and practice for
unmanned aerial vehicles. IEEE Internet of Things Journal 10, 4 (2022), 3548–3566.

[52] Yiren Zhou, Seyed-Mohsen Moosavi-Dezfooli, Ngai-Man Cheung, and Pascal
Frossard. 2018. Adaptive quantization for deep neural network. In Proceedings of
the AAAI Conference on Artificial Intelligence, Vol. 32.

https://doi.org/10.1109/TC.2015.2389845
https://doi.org/10.1109/TC.2015.2389845
https://doi.org/10.1109/MS.2018.111095718
https://doi.org/10.1109/TSE.2019.2907595
https://doi.org/10.1145/3597503.3639186
https://doi.org/10.1145/3597503.3639186

	Abstract
	1 Introduction
	2 Related Work
	3 SwarmUpdate
	3.1 Problem Definition
	3.2 SwarmSync
	3.3 SwarmModelPatch

	4 Empirical Evaluation Methodology
	4.1 Baseline Strategies
	4.2 Experimental Design

	5 Results
	5.1 RQ1: What is the update synchronization efficiency of SwarmSync in a heterogeneous UAV swarm?
	5.2 RQ2: What is the transmission overhead of SwarmSync in a heterogeneous UAV swarm?
	5.3 RQ3: What is the trade-off between efficiency, overhead and accuracy when updating a model with SwarmModelPatch?

	6 Discussion
	7 Threat to Validity
	8 Conclusion
	9 Acknowledgements
	References

