
A Systematic Literature Review of Software

Engineering Research on Jupyter Notebook

Md Saeed Siddika, Hao Lib, Cor-Paul Bezemera

aUniversity of Alberta, Edmonton, Canada
bQueen’s University, Kingston, Canada

Abstract

Context : Jupyter Notebook has emerged as a versatile tool that transforms
how researchers, developers, and data scientists conduct and communicate
their work. As the adoption of Jupyter notebooks continues to rise, so does
the interest from the software engineering research community in improving
the software engineering practices for Jupyter notebooks.

Objective: The purpose of this study is to analyze trends, gaps, and
methodologies used in software engineering research on Jupyter notebooks.

Method : We selected 146 relevant publications from the DBLP Computer
Science Bibliography up to the end of 2024, following established systematic
literature review guidelines. We explored publication trends, categorized
them based on software engineering topics, and reported findings based on
those topics.

Results : The most popular venues for publishing software engineering
research on Jupyter notebooks are related to human-computer interaction
instead of traditional software engineering venues. Researchers have ad-
dressed a wide range of software engineering topics on notebooks, such as
code reuse, readability, and execution environment. Although reusability is
one of the research topics for Jupyter notebooks, only 64 of the 146 studies
can be reused based on their provided URLs. Additionally, most replication
packages are not hosted on permanent repositories for long-term availability
and adherence to open science principles.

Conclusion: Solutions specific to notebooks for software engineering is-
sues, including testing, refactoring, and documentation, are underexplored.
Future research opportunities exist in automatic testing frameworks, refac-
toring clones between notebooks, and generating group documentation for
coherent code cells.

Preprint submitted to Journal of Systems and Software April 24, 2025



Keywords:
Jupyter Notebook, Software Engineering, Data Analysis

1. Introduction

In recent years, Jupyter Notebook has emerged as a powerful and ver-
satile computing platform for data science, scientific research, and software
development [112, 135]. Its user-friendly interface has revolutionized the
way researchers, developers, and data scientists conduct and communicate
their work. Jupyter Notebook provides a unique platform for integrating
code, visualizations, and narrative text, fostering reproducibility, and facil-
itating collaborative exploration of data and algorithms [171]. Seamlessly
incorporating code, data, and output into a single file makes the Jupyter
Notebook ideal for data analysis, scientific computing, and machine learn-
ing (ML) tasks. Moreover, its support for multiple programming languages,
including Python, R, and Julia, makes it versatile and widely accessible to
a diverse community of researchers, data scientists, and educators. How-
ever, despite their popularity, notebooks have been associated with several
challenges, such as low reproducibility rates, problems with their execution
environments, and excessive code duplication [46].

As Jupyter notebooks are often created and maintained by users without
a software engineering background [150], there has been a growing interest
from software engineering researchers to help notebook users integrate best
software engineering practices into their notebooks. As a result, there has
been a growing body of software engineering research that targets Jupyter
Notebook. In this paper, we conduct a systematic literature review (SLR) of
such research and the problems addressed by it.

We systematically searched academic publications to identify relevant
studies related to software engineering research on Jupyter Notebook. We
followed Kitchenham’s guidelines [71] for our SLR to ensure rigor and im-
partiality. We comprehensively searched all the papers on Jupyter Notebook
indexed in the DBLP database [80] and published until 2024. Then, we
filtered the papers focused on software engineering research on Jupyter note-
books. The review process involved several steps, including screening the
titles and abstracts of the identified studies, assessing their relevance based
on the inclusion criteria, and extracting relevant data from the selected stud-
ies. We finally selected 146 papers as our primary studies. During our SLR,
we focused on the following two research questions (RQs):

2



• RQ1: How much software engineering research on Jupyter
Notebook has been published? We analyzed current trends in
the publication of software engineering research on notebooks to help
future researchers identify potential venues for their work. The num-
ber of publications has gradually increased over the years. Most (78
of 146 studies) software engineering research on notebooks has been
published at conferences, indicating a fast-moving field. Our research
found that other venues beyond core software engineering conferences
published the highest number of studies; for example, the ACM Con-
ference on Human Factors in Computing Systems (CHI) published 15
studies. Conversely, the International Conference on Software Engi-
neering (ICSE) published six studies on software engineering research
on notebooks. According to our study, a significant number of the arti-
cles we examined, specifically 31 out of 146 (21%), had affiliations with
industry institutions such as Microsoft Research (12 studies) or IBM
Research Lab (6 studies). This highlights the practical importance and
real-world applications of the research findings. We identified 67 studies
that provided URLs to replication packages. Of these, 64 URLs were
deemed reusable, while three were not, due to missing source code or
unclear execution instructions. Most replication packages (54 studies)
are hosted in GitHub repositories, which is against the best practices
for open science in software engineering [98] as such repositories can
disappear over time. Only 13 replication packages were hosted in a
permanent repository, such as Zenodo or Figshare.

• RQ2: Which software engineering topics are being studied in
software engineering research on Jupyter Notebook? We cat-
egorized the primary studies into 11 software engineering topics: code
reuse and provenance, managing the computational environment and
workflow, readability of notebooks, datasets of notebooks, documenta-
tion of notebooks, testing and debugging, visualization in notebooks,
best practices, cell execution order, notebook code generation, and sup-
porting other programming paradigms. Our findings indicate that code
reuse and provenance is the most extensively researched topic related
to Jupyter Notebook, with 32 studies focusing on it. This is followed
by managing computational environment and workflow with 29 stud-
ies, and readability of notebooks with 11 studies. These results suggest
that researchers are primarily concerned with code cells in notebooks,

3



which often require significant human effort to understand. We also
identified 19 publicly available Jupyter Notebook datasets used in the
studies, most of which were sourced from Kaggle and GitHub reposi-
tories.

Our systematic literature review reveals that software engineering re-
search on Jupyter notebooks is an active research direction with diverse
publication venues beyond core software engineering. Our research indi-
cates that studies on notebooks are highly focused on dealing with code
cells in notebooks, which require considerable human effort to understand
and manage. Although there are techniques and tools for software engi-
neering in Jupyter notebooks, such as automated refactoring tools, testing
frameworks, and strong documentation practices, they are often insufficient.
These present a chance for improvement, since better tools can enhance the
usability and quality of projects in Jupyter notebooks. Future research can
focus on improving these tools to support collaboration and reproducibility
in scientific computing and data analysis.

The remainder of this paper is organized as follows. Section 2 gives an
overview of the Jupyter Notebook platform. Section 3 describes our method-
ology. Sections 4 and 5 present the results of the research questions. Section 6
presents the future research directions derived from this SLR. Section 7 iden-
tifies the threats to validity and Section 8 concludes the paper.

2. The Jupyter Notebook Platform

Jupyter Notebook allows users to edit and execute code inside a web-
based interface. Unlike traditional IDEs like PyCharm, Jupyter Notebook
provides a cell-based interface that seamlessly integrates code with output
and allows individual code cell execution in any order. In this section, we
explore the platform’s features and its utilization in various fields.

2.1. Unique Features of Notebooks

Jupyter Notebook enables users to manage code, documentation, and out-
put into a single document. Users can execute any code cell from anywhere
in the notebook; they are not bound to follow the code cell’s order sequence.
Two main features distinguish notebooks from a traditional source code file:
the cell-based structure and execution order.

4



Notebook
Title

Code Cell

Markdown
Cell

Execution
Number

Output
(Table)

Output
(Text)

Output
(Image)

Figure 1: An example of Jupyter Notebook’s structure

2.1.1. Cell-Based Structure

A Jupyter Notebook is composed of several types of cells: code cells for
executing source code, Markdown cells for documentation, and raw cells that
contain non-rendered contents. Furthermore, every code cell has an execution

5



number, which records the order of cell execution, and an output cell that
displays the result of the corresponding code cell. An illustrative example
of this structure is shown in Figure 1, sourced from a publicly accessible
notebook on Kaggle.1 Below is a detailed exploration of each cell type:

Code Cell: Code cells are the fundamental components of a Jupyter
Notebook, where the source code (Python or other supported languages de-
pending on the kernel) is written and executed. After execution, each code
cell shows the results immediately below the cell. A notebook enables users
to edit and execute each code cell independently, allowing them the flexi-
bility to run cells in any order they prefer. This means that programmers
are not obligated to execute their code sequentially from top to bottom or
limited to making changes only at the end of the notebook. Instead, they
can selectively modify and execute specific code cells at any point, fostering
a more dynamic and interactive coding experience [21, 46].

Markdown Cell: Jupyter Notebook’s Markdown cells provide the nar-
rative to a notebook. They use plain text with Markdown syntax to create
formatted text and media, including headings, lists, links, images, and for-
matted text to explain and guide the reader through the notebook’s purpose,
underlying logic, and methodology [115, 165]. This aspect of notebooks is
crucial for making them comprehensive and user-friendly, especially when
sharing with peers who may not be familiar with the code. Comments in
traditional programming are quite similar to this Markdown cell. However,
a Markdown cell generally contains more information than traditional textual
comments [91, 100].

Raw NBConvert Cell: A raw cell2 in a Jupyter notebook is a cell whose
contents are included without modification when converted using nbconvert.3

Unlike other cell types, raw cells are neither processed nor rendered within
the notebook itself and are primarily intended for direct inclusion in exported
outputs such as LaTeX documents or HTML files. This feature offers users
flexibility in formatting and exporting notebook content for various publica-
tion or documentation purposes.

Output Cell: The output of a code cell displays the results generated
by the execution of the corresponding code cell. These can include textual

1https://www.kaggle.com/code/cdabakoglu/heart-disease-classifications-machine-learning
2https://ipython.org/ipython-doc/3/notebook/nbformat.html#

raw-nbconvert-cells
3https://ipython.org/ipython-doc/3/notebook/nbconvert.html#nbconvert

6

https://www.kaggle.com/code/cdabakoglu/heart-disease-classifications-machine-learning
https://ipython.org/ipython-doc/3/notebook/nbformat.html#raw-nbconvert-cells
https://ipython.org/ipython-doc/3/notebook/nbformat.html#raw-nbconvert-cells
https://ipython.org/ipython-doc/3/notebook/nbconvert.html#nbconvert


data, tables, error messages, or visualizations created using libraries such as
Matplotlib,4 Seaborn,5 or Plotly.6 The outputs are automatically updated
whenever the associated code cell is executed. This capability makes Jupyter
notebooks especially valuable for data science and research, as outputs can
immediately visualize and communicate results alongside code, enhancing
understanding and analysis [124, 118].

2.1.2. Execution Order

The execution order in a Jupyter notebook refers to the sequence in which
the code cells are executed. Unlike traditional scripts, code cells in a note-
book can be executed non-linearly, depending on the user’s needs and explo-
ration path. The execution sequence is indicated by a number in brackets
next to each code cell (e.g., In [1]:), which shows the most recent execu-
tion order (see Figure 1 for the execution number). Jupyter Notebook allows
users to execute any code cell multiple times or out-of-order. This flexibility
allows notebook users to test specific parts of their code, troubleshoot issues,
or make adjustments without rerunning the entire notebook [140, 116, 55].
This type of execution in notebooks also helps the iterative nature of ex-
ploratory data analysis [33]. However, out-of-order execution can also cause
problems, such as failure to load dependencies if they are not properly man-
aged in the code [178]. Researchers found that about 36% of notebooks on
GitHub did not execute in linear order [99].

2.2. Applications of Jupyter Notebooks

Jupyter Notebook is a popular tool for data analysis and data science,
often used for interactive exploration during experiments [112, 67, 190]. It
is considered an effective tool for both experienced and novice data scien-
tists [36, 18]. Its flexibility in code execution facilitates short feedback cy-
cles, which are essential for the iterative data analysis process [33]. While
notebooks have been used with static visualizations, interactive visualiza-
tions can also be embedded and supported, as well as advanced visual anal-
ysis [106, 184]. These allow users to quickly try out different data analysis
options and observe the results with minimal effort. Notebooks are also used

4https://pypi.org/project/matplotlib/
5https://pypi.org/project/seaborn/
6https://pypi.org/project/plotly/

7

https://pypi.org/project/matplotlib/
https://pypi.org/project/seaborn/
https://pypi.org/project/plotly/


for generating personalized data narrations over a given dataset for interac-
tive data exploration [19] and sharing data science work through presentation
slides [202, 176, 81, 107].

Jupyter notebooks are widely used in the education sector and in aca-
demic teaching [6, 157, 113, 17]. They provide an intuitive and user-friendly
platform for teaching programming concepts and designing course struc-
tures [129, 65]. Educators use Jupyter notebooks to create coding tutorials,
assignments, and lecture materials that foster active learning and engage-
ment among students [6, 4]. Research has shown that the use of Jupyter
notebooks in educational settings significantly enhances the student’s un-
derstanding of course materials [9]. Additionally, studies demonstrate that
Jupyter notebooks are particularly convenient for teaching data science, as
they eliminate the need for students to install software locally or use spe-
cific machines [163]. Despite their popularity for managing coding-based
assignments, automatic assignment grading in Jupyter notebooks presents
challenges. The standard automated assessment grading tool for Jupyter
notebooks, such as nbgrader [52]) has limitations; for example, it cannot
automatically submit scores to a Learning Management System (LMS) like
Canvas and does not provide automated feedback to students [95]. To ad-
dress the automatic score submission, Malone et al. developed an automated
assignment grading system for Jupyter notebooks that focuses on gamified
cybersecurity exercises [94].

Jupyter Notebook is popular for modeling and analyzing scientific tasks
and performing experimental simulations [11, 142, 110, 164]. For example,
Tran et al. developed a library for Jupyter Notebook that can set up and
control additive manufacturing machines such as 3D printers [161]. Wils-
dorf et al. presented a Jupyter Notebook extension that lends support to
modelers by automatically specifying and running suitable simulation exper-
iments [192]. Jupyter Notebook is also popular for analyzing GIS data to
deal with big geospatial data [200, 199, 51]. For example, Valentine et al.
implemented a data discovery studio for geoscience data discovery and ex-
ploration using Jupyter Notebook [162]. Yin et al. presented a cyberGIS
framework to achieve data-intensive and scalable geospatial analytics using
the Jupyter Notebook [200]. Jupyter notebooks are also used as a toolbox
for interactive surface water mapping [108], geospatial environmental data
processing [158], and astrophysical data-proximate analysis [62].

Notebooks are often used in the healthcare sector to analyze complex
medical data [48, 5, 8]. For example, Hao et al. from IBM Research devel-

8



oped customized healthcare data analysis pipelines in Jupyter Notebook to
support healthcare users on user-friendly and reusable data analytics [53].
Almugbel et al. developed a tool that allows users to easily distribute their
biomedical data analysis through notebooks uploaded to a GitHub reposi-
tory or a private server [5]. The study provided four different Jupyter note-
books to infer differential gene expression, analyze cross-platform datasets,
and process RNA sequence data. Biomedical researchers prefer notebooks
to document and share their research with their community [5, 8]. For ex-
ample, researchers used Jupyter Notebook as a co-design tool that combines
static illustrations and interactive ML model explanations to predict health
risk in diabetes care [8]. Furthermore, Llaunet et al. developed and shared
a solution with centralized Jupyter Notebook code to support various med-
ical applications such as medical image processing [79]. Beyond the above
sectors, people use Jupyter Notebook in different areas. For example, jour-
nalists and media organizations use notebooks to analyze journalism content
and visualize trends and patterns of newspaper data [148, 153].

3. Research Methodology

For our systematic literature review of software engineering research on
Jupyter notebooks, we followed the guidelines proposed by Kitchenham [71].
The planning stage of our work includes two steps: (1) identifying the need
for a systematic review and (2) developing the review protocol. In the con-
ducting stage, based on the review protocol from the planning stage, we
searched and selected the primary studies. We considered DBLP7 as the
search space, as it covers all the major software engineering journals and
conference proceedings published by renowned publishers, e.g., IEEE, ACM,
Springer, and Elsevier. Then, we extracted data from DBLP and synthesized
the data. We selected 146 papers as our primary studies after completing
all the steps in this process. Finally, in the reporting stage, we concluded
the systematic review by reporting the collected data and findings. Figure 2
summarizes the steps of our methodology. In this section, we explain each
step in more detail.

7https://dblp.org/

9

https://dblp.org/


Planning the Review Conducting the Review Reporting the Review

Describing the results
Identifing the need for a

systematic review

Developing the review
protocol

Extracting data from
primary studies

Synthesizing the data

Searching and selecting
primary studiesStart

End

Figure 2: The steps of our SLR on software engineering research on Jupyter Notebook
based on Kitchenham’s guidelines [71]

3.1. Planning the Review

3.1.1. Identifying the Need for a Systematic Review

The need for a systematic review of software engineering research on
Jupyter Notebook arises from the growing popularity and widespread adop-
tion of Jupyter notebooks in various research fields. The widespread use
of Jupyter notebooks has highlighted software engineering challenges such as
poor code quality, lack of coding standards, and code duplication [1, 179, 73].
These difficulties have sparked notable interest among software engineering
researchers in helping notebook users adopt software engineering practices
in their work. As a result, more research has been conducted on these is-
sues in Jupyter notebooks. This highlights the need to conduct a systematic
literature review of this research and the challenges it addresses, as well as
identify what should be studied next.

Table 1: Questions in the data extraction form

Question (Q) - Description (D) - Rationale (R) Target RQ

Q: In which year was the study published? RQ1
D: The publication year of the corresponding study.
R: The publication year helps to indicate the interest in this research topic across the
years.

Q: What is the publication type? RQ1
D: The publication type of the study (Journal, Conference, Book, Technical report, or
Other).
R: Understanding the distribution of research across these publication types provides
insights into the preferred channels for sharing knowledge in the field of software engi-
neering research on Jupyter notebooks.

Q: Was the research done with an industry collaborator? RQ1

Continued on next page

10



Question (Q) - Description (D) - Rationale (R) Target RQ

D: Yes if any of the co-authors have an industry affiliation in the study, No otherwise.
R: Collaborations between academia and industry indicate that the research is con-
ducted towards solving practical problems and has potential direct applications in in-
dustry settings. Understanding the extent of industry collaboration can help in assessing
the balance between theoretical and applied research in software engineering research
on Jupyter notebooks.

Q: What type of solution has been proposed? RQ1
D: The type of proposed solution (theoretical framework, developed solution, or empir-
ical analysis).
R: Identifying the type of solution proposed in each study helps to understand the
nature of the study: knowing the type of solution provides insights into the focus of
the research and its methodology - whether it is more conceptual, application-based, or
data-driven.

Q: Where are the solutions publicly available? RQ1
D: The public URL of the provided solution or study to reuse the solution.
R: This question seeks the specific URLs or platforms where researchers have made their
solutions or study results available. These resources allow for a practical evaluation of
how easily other researchers and practitioners can access, test, and potentially replicate
the study’s findings. It also contributes to understanding the commitment of software
engineering for the Jupyter Notebook research community to open science and sharing
knowledge and tools.

Q: Which specific software engineering problems are addressed by the study? RQ2
D: The software engineering problem(s) that the study targets (e.g., code quality, re-
producibility or usability).
R: This question helps to understand which challenges are focused on by software en-
gineering researchers for Jupyter notebooks.

Q: How do software engineering researchers evaluate their solutions? RQ2
D: The steps to evaluate or measure the provided solution or study.
R: Determining how software engineering researchers evaluate their solutions in stud-
ies on Jupyter notebooks is crucial for assessing the validity and effectiveness of their
findings. This question aims to understand the methodologies and metrics used for eval-
uation, such as experimental designs, case studies, user surveys, performance metrics,
or qualitative analysis. Understanding these evaluation methods allows for critically
assessing the research’s reliability and applicability.

Q: What do the authors mention as the main contributions? RQ2
D: List of the contributions of the study.
R: This question helps to map out the progress that has been made in the field so far.

Q: What do the authors mention as the implications? RQ2
D: Implications of the results reported in the study.
R: The implications are critical for understanding the real-world impact and broader
significance of a study. This question seeks to uncover how the results of each study
might influence future research, industry practices, educational methodologies, or soft-
ware development processes.

Q: What are the limitations of the study? RQ2
D: List of the limitations presented in the study.
R: This question aims to uncover the acknowledged weaknesses, constraints, or aspects
that were not covered in the studies. Knowing these limitations helps evaluate the
robustness of the software engineering research on notebooks. It also provides insights
into areas that need further investigation or improvement in future studies.

11



3.1.2. Developing the Review Protocol

A review protocol is necessary to outline the procedure for conducting the
systematic review to limit the likelihood of researcher bias [71]. To meet these
objectives, our protocol involves: (1) defining research questions, (2) search-
ing and selecting primary studies, (3) extracting data from primary studies,
and (4) synthesizing the data.

As a starting point, we formulated research questions that guided this
systematic literature review. Our goal is to give an overview of the academic
software engineering research on Jupyter Notebook. To achieve this, we
defined two research questions (RQs):

• RQ1: How much software engineering research on Jupyter Notebook
has been published? (Section 4)

Motivation: The first research question gives a quantitative overview
of the software engineering research on Jupyter Notebook. RQ1 aims
to provide a high-level overview of how the field of software engineering
research on Jupyter Notebook is evolving and where it is getting at-
tention. RQ1 also explores what kinds of solutions are being proposed
by software engineering researchers to deal with problems in Jupyter
notebooks. By answering RQ1, we can identify trends and patterns of
software engineering research targeted at Jupyter notebooks over time.
Furthermore, this question explores whether research in this area fol-
lows best practices for open science [98].

• RQ2: Which software engineering topics are being studied in software
engineering research on Jupyter Notebook? (Section 5)

Motivation: The second research question is motivated by the idea
that gaining a detailed understanding of the topics explored in soft-
ware engineering research on Jupyter Notebook will help to pinpoint
areas that have not yet received sufficient attention and form promising
future research directions.

The specific procedures for searching and selecting primary studies, ex-
tracting data from primary studies, and synthesizing the data identified from
these studies are presented in the next section.

12



3.2. Conducting the Review

3.2.1. Searching and Selecting Primary Studies

We searched all the indexed articles in the DBLP 8 to find relevant papers
for this systematic review. DBLP is a computer science bibliography website
that provides free access to bibliographic information on major computer sci-
ence publications. It includes conference papers, journal articles, and other
academic reports related to computer science. It is a reputable and compre-
hensive source of academic papers, and many researchers [193, 32, 82] used
it to find relevant studies for their systematic literature reviews.

The focus of our review is software engineering research on Jupyter Note-
book. This type of research includes work that analyzes or improves current
software engineering practices in notebooks. To find relevant studies for our
review, we searched the title of the papers with the following query: “Note-
book” or “Jupyter”. The literature list was compiled up to the end of 2024,
capturing the latest software engineering research on Jupyter notebooks.

To make sure that we include only studies on software engineering re-
search on Jupyter Notebook, we define the following inclusion criteria:

• The subject of the study should be Jupyter Notebook (and not, e.g.,
physical notebooks)

• The study should focus on at least one software engineering topic

• The study must be available online to ensure its accessibility

• If a study has both an official and pre-print available, we picked the
official one as the most recent

• The study must be written in English

3.2.2. Extracting Data from Primary Studies

We created a set of questions for the data extraction form. These ques-
tions were designed to gather the necessary information from the primary
studies. To streamline the data extraction process, we linked each question
to one of our research questions and provided the rationale for the question.
We refined this form through several iterations with randomly selected stud-
ies. Table 1 presents the list of questions, their descriptions, rationales, and

8https://dblp.org/

13

https://dblp.org/


corresponding research questions. We combined the data collected from the
data extraction forms based on the questions. Then, we synthesized them
to answer our research questions in this SLR. This compilation of data will
give an overview of the existing software engineering research on Jupyter
notebooks.

3.2.3. Synthesizing the Data

We manually explored the title of the online version of all those papers.
In this stage, we excluded several studies that did not focus on computational
notebooks but on physical notebooks (e.g., laptops). Then, we explored the
studies’ abstracts and selected the papers that target software engineering-
related topics on Jupyter Notebook. We also excluded studies that focused
on topics that are adjacent to software engineering research on Jupyter Note-
book, such as those on using Jupyter Notebook for software engineering ed-
ucation. For example, we excluded the experience report by Al-Gahmi et al.
[4] on using Jupyter Notebook in classroom programming.

We manually reviewed the list of studies to exclude duplicates, e.g., some-
times a study’s final official version and unofficial pre-print version are avail-
able online. For example, Wang et al. published a pre-print of their pa-
per titled “Themisto: Towards Automated Documentation Generation in
Computational Notebooks” [173]. After that, the same paper was published
officially in the next year with a different title “Documentation Matters:
Human-Centered AI System to Assist Data Science Code Documentation
in Computational Notebooks” [174]. We manually checked both versions of
that paper and excluded the earlier version.

To ensure the reliability of our study selection procedure, the first and
the third authors independently went through the list of studies following
the procedure above. We used Cohen’s Kappa statistic to measure the Inter-
Rater Reliability (IRR) [96], which indicates the level of agreement between
two raters in a classification task. We found that Cohen’s Kappa value is 0.79,
which indicates substantial agreement between the raters. We measured the
IRR into two stages. In the first stage, the first and third authors discussed
and resolved each disagreement to come up with a list of selected studies up
to 2023. In the second stage, studies from 2024 were discussed and resolved
by the first and second authors. The disagreements mostly arose from the
first author’s misunderstanding of defining the scope of provenance in the
notebook. After discussing and resolving these disagreements, the Kappa
value became 1.0 after resolving the disagreements. As a result, we ended

14



up with a list of 146 studies for our SLR.

3.3. Reporting the Review

After conducting the review, we began reporting the results. Using the
data extraction strategy outlined in Section 3.1.2, we examined the primary
studies to address the research questions of this literature review. We fol-
lowed the data extraction questions presented in Table 1 to gather relevant
data for reporting that would help us answer our research questions. We
reported a quantitative overview of the software engineering research on
Jupyter Notebook in Section 4 to address RQ1. We reported the publication
year, publication type (e.g., journal, conference, symposium, workshop, and
others), and industry collaborations. Our analysis also focused on studies
that provided URLs for notebook replication, which allowed us to assess the
hosting platforms used for these packages. Then in Section 5, we reported a
comprehensive discussion of the various software engineering topics addressed
in the literature we reviewed, aligning our analysis with RQ2. We searched,
reviewed, and finalized a well-structured categorization of software engineer-
ing topics and subtopics. The first and third authors collaborated closely in a
card-sorting-like process to categorize the studies based on different software
engineering topics. We employed a Trello board9 as a dynamic organizational
tool to effectively manage and categorize the software engineering topics and
their corresponding subtopics.

4. RQ1: How much software engineering research on Jupyter Note-
book has been published?

4.1. Year-wise Distributions

The data from the SLR showcases a marked increase in soft-
ware engineering studies on Jupyter notebooks. The graph in Fig-
ure 3 shows the number of publications with software engineering research
on Jupyter notebooks per year. The figure outlines a growing trend. Soft-
ware engineering research on notebooks began with just one study in 2015
and followed an increasing trend to 42 in 2024. This trend reflects a growth
in academic interest in considering software engineering practices in Jupyter
notebooks.

9https://trello.com/

15

https://trello.com/


2015 2017 2018 2019 2020 2021 2022 2023 2024
Publication Year

0

5

10

15

20

25

30

35

40
Nu

m
be

r o
f S

tu
di

es

1 1

7 7

12

23
26 27

42

Figure 3: Number of studies published over the years

4.2. Publication Types

The majority of the work on software engineering research on
notebooks was published at conferences. Figure 4 shows the number of
studies per type. Our research findings showed that the majority, specifically
53.4% (78 out of 146 studies), were presented at conferences. In addition,
26 studies were published in journals, 11 in workshops, and 11 in symposia.
Furthermore, we identified 20 studies that appeared in informal and other
types of publications, such as book chapters, thesis dissertations, or those
published in the arXiv repository. It is important to note that conferences
publish findings more quickly than journals, allowing researchers to share up-
dates with the community faster [44]. The substantial number of conference
papers included in the systematic literature review indicates that software
engineering research on notebooks is an active research area of study.

4.3. Publication Venues

The most popular venues for software engineering research on
notebooks are focused on human-computer interaction (HCI). Ta-
ble 2 presents the list of conferences, journals, symposiums, workshops, and
other publication venues where the primary studies have been published. We
found that the most popular venue (15 studies) was the ACM Conference on
Human Factors in Computing Systems (CHI). Likewise, the most popular
symposium (six studies) is the IEEE Symposium on Visual Languages and

16



Conference Journal Symposium Workshop Informal
and Other

Publications
Publication Type

0

10

20

30

40

50

60

70

80

Nu
m

be
r o

f S
tu

di
es

78

26

11 11

20

Figure 4: The distribution across publication types

Human-Centric Computing (VL/HCC), and one of the most popular jour-
nals (two studies) is the ACM Transactions on Computer-Human Interaction
(TOCHI). This pattern emphasizes the interdisciplinary nature of working
with Jupyter notebooks and underlines the importance of their user experi-
ence and usability (which are important topics at the HCI venues above).

Table 2: Publication outlets for software engineering research on notebooks in conferences,
journals, symposiums, workshops and other platforms

Type Acronym Venue Reference Count

Conference

CHI ACM Conference on Human Factors in
Computing Systems

[55, 64, 84, 81,
97, 125, 135, 172,
183, 189, 21, 54,
60, 175, 184]

15

ASE Automated Software Engineering Con-
ference

[10, 30, 100, 177,
197, 203, 59]

7

ICSE International Conference on Software
Engineering

[109, 119, 155,
180, 178, 179]

6

MSR Mining Software Repositories Confer-
ence

[46, 120, 115, 40] 4

TaPP USENIX Conference on Theory and
Practice of Provenance.

[28, 114, 75, 117] 4

APSEC Asia-Pacific Software Engineering
Conference

[131, 145, 154] 3

SANER Int. Conference on Software Analysis,
Evolution and Reengineering

[159, 167] 2

CAIN Int. Conference on AI Engineering –
Software Engineering for AI

[122, 41] 2

EDBT International Conference on Extending
Database Technology

[56, 186] 2

Continued on next page

17



Type Acronym Venue Reference Count

Conference

e-Science IEEE International Conference on
eScience

[3, 25] 2

CIDR Int. Conference on Innovative Data
Systems Research

[93, 12] 2

SciPy Scientific Computing with Python
Conference

[99, 92] 2

ICSME Int. Conference on Software Mainte-
nance and Evolution

[61, 205] 2

FSE ACM International Conference on the
Foundations of Software Engineering

[29, 181] 2

IUI Annual Conference on Intelligent User
Interfaces

[101, 38] 2

SCAM IEEE Working Conference on Source
Code Analysis and Manipulation

[149] 1

EASE Int. Conference on Evaluation and As-
sessment in Software Engineering

[2] 1

PEARC Practice and Experience in Advanced
Research Computing Conference

[185] 1

UCC International Conference on Utility
and Cloud Computing

[196] 1

EMNLP Int. Conference Empirical Methods in
Natural Language Processing

[91] 1

SPLC Int. Systems and Software Product
Line Conference

[13] 1

IJCAI International Joint Conference on Ar-
tificial Intelligence

[169] 1

FLAIRS Int. Florida Artificial Intelligence Re-
search Conference

[105] 1

WWW ACM Web Conference [77] 1
ACL Annual Meeting of the Association for

Computational Linguistics
[201] 1

ICPC IEEE/ACM International Conference
on Program Comprehension

[132] 1

AIMLS International Conference on AI ML
Systems

[190] 1

Programming ACM Conference on the Art, Science,
and Engineering of Programming

[104] 1

KDIR Int. Conference on Knowledge Discov-
ery, Engineering, and Management

[69] 1

ISWC International Semantic Web Confer-
ence

[137] 1

ICMD International Conference on Manage-
ment of Data

[130] 1

QCE International Conference on Quantum
Computing and Engineering

[70] 1

SEAA Euromicro Conference on Software En-
gineering and Advanced Applications

[43] 1

CSR International Conference on Cyber Se-
curity and Resilience

[128] 1

MOD International Conference on Manage-
ment of Data

[86] 1

JCSSE Int. Joint Conference on Computer
Science and Software Engineering

[126] 1

Continued on next page

18



Type Acronym Venue Reference Count

Journal

EMSE Empirical Software Engineering Jour-
nal

[116, 127, 166] 3

TOCHI ACM Transactions on Computer-
Human Interaction

[121, 174] 2

ACM-HCI Proceedings of the ACM on Human-
Computer Interaction

[134, 187] 2

VLDB International Journal on Very Large
Data Bases

[88, 146] 2

SoftwareX SoftwareX [35, 123] 2
IEEE TVCG IEEE Transactions on Visualization

and Computer Graphics
[89, 144] 2

TOSEM ACM Transactions on Software Engi-
neering and Methodology

[90, 26] 2

ACM PL Proceedings of the ACM on Program-
ming Languages

[141] 1

Sigmod Rec. ACM SIGMOD Record Journal [118] 1
CGF Computer Graphics Forum [37] 1
Interactions ACM Interactions [124] 1
GigaScience GigaScience [139] 1
BTW Journal on Business, Technologie und

Web
[68] 1

JASEP The Journal on the Art, Science, and
Engineering of Programming

[63] 1

PLoS CB. PLOS Computational Biology Journal [133] 1
TiiS ACM Transactions on Interactive In-

telligent Systems
[85] 1

SoftwareTT Softwaretechnik-Trends Journal [152] 1
JASIST Journal of the Association for Informa-

tion Science and Technology
[15] 1

Symposium

VL/HCC Symposium on Visual Languages and
Human-Centric Computing

[73, 22, 156, 78,
66, 23]

6

UIST ACM Symposium on User Interface
Software and Technology

[195, 107] 2

AISTA ACM International Symposium on
Software Testing and Analysis

[165] 1

Onward ACM SIGPLAN International Sympo-
sium on New Ideas, New Paradigms,
and Reflections on Programming and
Software

[151] 1

SPLASH-E ACM SIGPLAN International Sympo-
sium on SPLASH-E

[76] 1

Workshop

IDE ACM/IEEE Workshop on Integrated
Development Environments

[170, 160] 2

IPAW International Provenance and Annota-
tion Workshop

[138, 74] 2

SC Workshop Workshops of the International Con-
ference for High Performance Comput-
ing, Networking, Storage and Analysis

[16, 191] 2

SOAP ACM Int. Workshop on the State Of
the Art in Program Analysis

[103] 1

QuASoQ International Workshop on Quantita-
tive Approaches to Software Quality

[7] 1

Continued on next page

19



Type Acronym Venue Reference Count

HILDA Workshop on Human-In-the-Loop
Data Analytics

[14] 1

PAINT Workshop on Programming Abstrac-
tions and Interactive Notations, Tools,
and Environments

[168] 1

IWSC International Workshop on Software
Clones

[140] 1

Informal
and Other
Publications

arXiv An archive for electronic preprints of
scientific studies

[20, 24, 31, 34,
39, 45, 47, 50, 57,
87, 83, 111, 143,
147, 182, 188,
194, 198, 204]

19

Thesis Thesis dissertation was published at
the University of California, San Diego

[151] 1

4.4. Industry Collaborations

Software engineering research on Jupyter notebooks is regularly
done in collaboration with industry. Of the 146 primary studies on
software engineering research on Jupyter notebooks, 31 (21.2%) were done
with industry collaborations. Table 3 presents the industry affiliations of
the studies included in our SLR. Microsoft Research has the highest repre-
sentation among the identified industry collaborations, with a study count
of 12. IBM Research has six studies on software engineering research on
notebooks, followed by Microsoft. We analyzed those studies and found
that IBM research mainly focused on code documentation in Jupyter Note-
book [91, 101, 174, 169, 172]. On the other hand, the Microsoft Research team
focuses on code management [55, 155, 118, 100, 81, 97]. We also found that
JetBrains Research was involved in 5 studies, whereas Google and Fujitsu
Research each have two studies. Overall, the industry affiliations reflect the
widespread interest and impact of software engineering research on Jupyter
notebooks in both academia and industry.

4.5. Replication Packages

Our systematic literature review discovered a gap in the avail-
ability of the resources necessary to replicate the research. Specif-
ically, almost half of the studies (79 out of 146) did not provide publicly
accessible source code or installer files of their work. This made it difficult
to validate and build on their findings. In contrast, the remaining 67 stud-
ies provide source code, installer files, datasets, or a combination thereof to
replicate their research results. Upon a closer manual examination of these

20



Table 3: Industry-affiliated software engineering research on Jupyter Notebook

Industry Name List of Literature

Microsoft Research [155, 118, 55, 100, 81, 97, 189, 21, 20, 59, 83, 107]
IBM Research [91, 101, 169, 172, 174, 25]
JetBrains Research [46, 159, 45, 47, 160]
Fujitsu Research of America [10, 203]
Google Inc [114, 201]
Apple [23]
Adobe Research [22]
Megagon Labs [77]
Ploomber [99]

studies, we found that replication packages for 64 studies are available be-
cause they provide the source code with clear instructions to execute. The
remaining three studies lacked available replication packages due to the ab-
sence of source code or lack of clear execution instructions [146, 131, 145].
For example, Settewong et al. [145] shared a GitHub URL10 of their work;
however, upon examination, we found neither source code nor installation
files.

Sharing replication packages of software engineering research
on notebooks regularly does not follow open science principles. We
found that the dominant platform of choice was GitHub, with 54 studies
opting to use it to host their replication packages. Although GitHub is a
widely accessible platform, any changes or deletions by repository owners
can be a risk to the future accessibility of the replication packages. Best
practices for open science in software engineering [98] recommend to adopt
platforms and repositories designed for the long-term archiving of research
outputs. We found that only 13 studies hosted their replication packages on
platforms that align with these best practices (i.e., they ensure the permanent
archiving of digital artifacts). Of these, 11 were hosted on Zenodo [105, 127,
115, 73, 120, 121, 7, 43, 40, 26, 182] and two on Figshare [90, 147].

4.6. Jupyter Notebook Extensions

We found that a modest 10.9% of the studies (16 of 146) ex-
plored the development and use of Jupyter Notebook extensions

10https://github.com/NAIST-SE/VizJupyterNotebooks

21

https://github.com/NAIST-SE/VizJupyterNotebooks


to enhance the user experience within notebook environments. De-
spite showing the potential benefits of Jupyter Notebook extensions, five
studies did not provide available replication packages due to missing links or
code [25, 101, 186, 168, 81]. We found that eight extensions were reusable
and integrable into Jupyter notebooks, showcasing a variety of functionalities
designed to improve the user experience of Jupyter notebooks [183, 10, 64,
116, 55, 68, 127, 88]. After replicating and integrating these extensions into
Jupyter notebooks, we found that the majority of Jupyter Notebook exten-
sions are designed to enhance the visualization and presentation of notebook
cells and their outputs [183, 10, 127, 64, 55, 111]. However, only a few
studies tackle more complex challenges related to the core functionalities of
Jupyter notebooks. For example, improving the quality and reproducibility
of Jupyter notebooks [116], managing data provenance through their exten-
sion [68, 37], allowing live migration of notebook environments [88], and
notifying potential fairness in data science code [54].

5. RQ2: Which software engineering topics are being studied in
software engineering research on Jupyter Notebook?

We have classified studies into 11 groups based on the specific software
engineering topics they addressed. By grouping those studies, we aim to
uncover the key challenges and solutions in software engineering that re-
searchers have explored in the context of Jupyter Notebook. We have listed
the identified topics, subtopics, and their corresponding studies in Table 4.
In this section, we will provide detailed information about these software
engineering topics and their associated studies.

5.1. Code Reuse and Provenance

Code reuse in Jupyter notebooks refers to the intentional act of leveraging
previously written code cells. Code reuse within Jupyter notebooks differs
from traditional IDEs, particularly regarding the notebook’s structure and
workflow. Jupyter notebooks employ a cell-based execution model that fa-
cilitates iterative coding, making them well suited to quickly test hypotheses
and iterate on data by reusing existing code cells [73]. A survey among
Microsoft data scientists revealed that 94% of the participants considered
reusing existing code in Jupyter notebooks to be at least “important” [21].
Users often reuse code through code cloning, where cells are copied within or
across notebooks, which can lead to inconsistencies and technical debt [73].

22



Table 4: List of software engineering topics addressed by SE research on Jupyter Notebook

Topics Subtopics List of studies

Code reuse and
provenance
(Section 5.1)

Code cloning [73, 198, 63, 131]
Reusing code snippets by code
search

[56, 84, 186, 85, 10, 57, 7, 126, 83]

Reproducibility [116, 115, 143, 133, 177, 178, 139, 3,
138]

Provenance [74, 117, 28, 68, 69, 137, 66, 37, 54, 154]

Managing computational
environment and workflow
(Section 5.2)

Empirical studies on workflows [78, 124, 24, 118, 130, 75, 156, 43, 205]
Computational environment in
notebooks

[31, 25, 21, 92, 88, 189, 128, 70, 16, 160,
86, 204, 141, 87]

Managing dependencies [203, 180, 35, 185]
Performance analysis [190, 191]

Readability of notebooks
(Section 5.3)

Refactoring [90, 140, 29, 30, 159, 146, 55]
Non-linear visualization [183, 64, 134, 20]

Documentation of
notebooks
(Section 5.4)

Empirical studies on documen-
tation

[136, 135, 125]

Documentation generation [174, 169, 91, 172, 100, 101, 81, 89, 41,
175, 107]

Cell header generation [167, 165, 166, 111]

Testing and debugging
(Section 5.5)

Empirical studies on testing
and debugging

[26, 147, 182]

Detecting bugs [132, 196, 12, 109, 34, 181, 47, 45]
Detecting data leakage [197, 155, 103]

Visualization in notebooks
(Section 5.6)

Empirical studies on visualiza-
tions

[2, 145, 127, 184, 194]

Interactive visualization [77, 195, 144, 60, 50]

Best practices
(Section 5.7)

Following code style standards [46, 179, 149, 15, 122, 123, 152]
Best practices for collaborative
use

[119, 121, 170]

Cell execution order
(Section 5.8)

- [105, 151, 61, 99, 93, 14]

AI-based coding assistance
for notebooks
(Section 5.9)

- [201, 13, 97, 22, 38, 58, 23, 188, 76]

Supporting other
programming paradigms
(Section 5.10)

- [104, 114, 168, 187]

Datasets of notebooks
(Section 5.11)

-
[46, 121, 84, 91, 180, 120, 73, 115, 125,
26, 90, 127, 40, 147, 43, 58, 47, 182, 7,
39]

To find reusable code more efficiently, code search tools provide support by
helping users locate relevant code cells or workflows [84]. However, proper
provenance management is crucial for understanding the origin and evolu-

23



tion of reused code, ensuring that dependencies and execution history are
clear [196]. Moreover, reproducibility becomes a challenge in notebooks, as
reused code might not produce consistent results if dependencies or execution
orders are not properly tracked [177]. In this subsection, we describe these
studies that address the challenges and opportunities of reusing code within
Jupyter notebooks and provenance.

5.1.1. Code Cloning

Code cloning in Jupyter notebooks refers to copying and pasting code
cells within the same notebook or between different notebooks. Research
has shown that code cloning is common in Jupyter notebooks. Over 70%
of all notebook code cells on GitHub are exact copies of other cells, and
approximately 50% of all notebooks contain no unique cells [63]. These
findings are also supported by Yang et al. [198], who noted that about 32%
of Jupyter notebooks hosted in GitHub repositories were directly copied from
Stack Overflow. The code snippets that are most frequently cloned in Jupyter
notebooks mainly relate to visualization (21%), followed by ML (15%) [73].
Among reused code, interproject clones in Jupyter notebooks are far more
common than intraproject clones, which is the opposite of the prevalence of
code clones in Java code [42]. Furthermore, another study indicated that
top-level notebook users (i.e., Grandmasters in Kaggle) are most likely to
clone common abstractions such as importing packages, configurations, file
IO operations, and showing data [131].

5.1.2. Reusing Code Snippets by Code Search

Searching for code snippets in Jupyter notebooks can be different from
traditional code. While users often seek specific functions or APIs in tradi-
tional code, notebook users frequently search for code cells (snippets) that
analyze similar data or follow comparable workflows [84]. As highlighted by
Li et al. [84], semantic code search is vital in this context, which enables
natural language queries that reflect the intended functionality of code cells
rather than just API names or keywords. Moreover, the flexible nature of
notebooks, where code, data, and results are integrated within a single file,
contrasts with the modular organization of traditional code. This integration
in notebooks makes it more difficult to isolate functionality and understand
the context of individual cells, which imposes challenges for code search such
as tracking the logical flow of code and capturing enough context within a
code cell [55].

24



Despite sharing common objectives, code search tools for Jupyter note-
books vary in their methodological approaches. For instance, some tools
utilize keyword-based search mechanisms, where users input specific terms
related to their queries. This approach, demonstrated in research by Wat-
son et al. [186], allows users to find relevant code by matching their search
terms with corresponding code repositories and snippets. On the other hand,
certain advanced search tools leverage deep learning techniques to interpret
natural language queries. This enables users to search for code snippets
more intuitively, using conversational language instead of strict keywords [84].
Similarly, Ragkhitwetsagul et al. [126] proposed Typhon, which integrates tra-
ditional information retrieval techniques (BM25) with UniXcoder [49] code
embeddings to perform text-to-code matching. In addition, Li and Lv [83]
developed a semantic search framework explicitly tailored for Jupyter note-
books, leveraging embeddings generated by large language models (LLMs)
from both markdown and code cells.

Additionally, some tools enhance search efficacy by employing graph rep-
resentations to illustrate code flow relationships within a Jupyter notebook.
By mapping the interactions and dependencies between different code cells,
these graph-based tools can identify interrelated code cells and suggest con-
nections that the user needs [56]. EDAssistant [85] introduces a methodology
for context-aware code search in Jupyter Notebook. This approach priori-
tizes example notebooks that align with the user’s intent and existing code,
assisting users in finding relevant code snippets to reuse and adapt during
exploratory data analysis. Similarly focused on cell-level recommendation,
Aydin et al. [7] proposed a specialized cell recommendation approach tar-
geting ML notebooks. Furthermore, some search solutions specifically target
the data visualization domain by mining, extracting, and cataloging Python
functions designed for visualization purposes [10]. This approach leverages
reusable visualization snippets from data science notebooks to facilitate ac-
cess to visualization-related code, thereby promoting the reuse and adapta-
tion of existing visualization workflows.

5.1.3. Reproducibility

Reproducibility ensures that other notebook users can get the same re-
sults from a notebook by following the same steps, using the same data, and
working in the same environment [3]. Reproducibility differs from code reuse
and cloning, which typically involves adapting code or directly copying code
into different environments and applying the code to different data to meet

25



Table 5: Good and bad practices that affect the reproducibility of a notebook

Good practice #1: Share and explain the data [133]

Reproducibility requires sharing data alongside notebooks. When full datasets are too large or sen-
sitive to share, provide a sample or detailed descriptions of the data and processing steps. Breaking
complex datasets into tiers ensures interpretability while maintaining accessibility and reproducibil-
ity.

Good practice #2: Document the process, not just the results [133]

Notebooks require documenting the process throughout the analysis, including taking notes during
the analysis, capturing key decisions, reasoning, and observations, and preserving the context of the
work. This approach enhances the clarity and utility of notebooks, facilitating their use for future
reference and collaboration.

Good practice #3: Record and manage library dependencies [133]

The notebook format does not encode library dependencies with pinned versions, making it difficult
(and sometimes impossible) to reproduce a notebook. To ensure reproducibility, users of notebooks
should carefully manage their dependencies using an environment management package. This process
involves creating and sharing a file, such as ‘environment.yml’ or ‘requirements.txt’, which lists all
the libraries and their specific versions used in the notebook. Such a file offers a clear and accurate
description of these dependencies.

Bad practice #1: Presence of non-executed code cells [116]

Non-executed cells can lead to discrepancies between the notebook’s apparent logic and its actual
state, making it unclear whether the code has been tested or contributes to the presented results.
This practice hinders the ability of others to reproduce the workflow, as the notebook may fail to
run as expected or produce inconsistent outcomes.

Bad practice #2: Out-of-order cell execution [116]

Out-of-order cell execution can create challenges for others trying to trace the steps necessary to
reproduce results. This occurs because dependencies between cells may need to be clarified or
temporarily broken. Such practices can lead to errors, incomplete outputs, or incorrect conclusions
when the notebook is reproduced.

Bad practice #3: Presence of hidden states [115]

A hidden state in a notebook occurs when variables or data are changed in ways that are not clearly
documented. Hidden states caused by cell re-execution or removal make the notebooks skip numbers
in the execution counter sequence. This often results from executing cells out of order or from relying
on previous sessions. Figure 5 presents an example of a hidden state. Such hidden states can make
it difficult for others to understand or replicate the workflow since the notebook’s output depends
on undocumented or inaccessible conditions.

different objectives of users, resulting in outputs that are different from the
original notebook.

Reproducibility is known as one of the key promises of Jupyter notebooks,
as they are often used to share results with others, allowing users to trace the
steps from raw data to final results [72]. However, achieving reproducibility
remains challenging due to issues such as out-of-order execution and repet-
itive execution of the same cell [177]. These issues differ from traditional
programming, where code execution is typically linear (from top to bottom),
ensuring a clear and consistent execution flow. For example, notebook users
might execute the same cell multiple times and only save the latest execu-

26



tion state, causing cells located at the notebook’s beginning to be executed
after later cells. This nonsequential execution can confuse others trying to
reproduce results, affecting notebook reproducibility [177, 178].

A study by Pimentel et al. [115] analyzed more than 1.4 million Jupyter
notebooks from GitHub and found significant reproducibility issues. The
study noticed that only 25% of the valid notebooks executed without errors
under straightforward conditions, and only 5% reproduced results identical to
their original outputs. Furthermore, Schröder et al. [143] revealed that only
14% of the available notebooks in published academic research on PubMed,11

where Jupyter notebooks are used as implementation, were reproduced suc-
cessfully. The study noticed the need for comprehensive documentation and
containerization of notebooks, which supports the good practices presented
by Rule et al. [133]. We have analyzed the relevant studies and presented a
list of good and bad practices that affect the reproducibility of a notebook
in Table 5.

Researchers have demonstrated that the reproducibility of Jupyter note-
books can be significantly improved by resolving cell dependencies within the
notebook’s code [177, 180]. Cell dependencies represent the relationships be-
tween variables, functions, and data in different code cells. Wang et al. [178]
proposed a method to build a cell dependency graph using static analysis to
accurately model these relationships and found that 83% of executable note-
books can be reproduced using their approach. Samuel and König-Ries [138]
developed a visualization tool ReproduceMeGit to check the reproducibility
of Jupyter notebooks from GitHub by extending the work from Pimentel
et al. [115]. This tool can automatically install dependencies from require-
ments.txt or setup.py files and execute the notebook to provide highlights of
the reproducibility study through a user interface.

5.1.4. Provenance

Provenance in notebooks refers to the detailed history of actions, exe-
cutions, and dependencies that led to the current state of a notebook. It
includes the sequence of cell executions, the modifications made to cells,
variable dependencies, data flow, and intermediate outputs [68]. Unlike re-
producibility which emphasizes achieving identical results under a consistent
initial environment, provenance addresses the historical and iterative details

11https://pubmed.ncbi.nlm.nih.gov/

27

https://pubmed.ncbi.nlm.nih.gov/


(i) (ii) (iii)

User
executed
this cell
twice in

execution
2 and 3

User
executed
this cell
twice in

execution
2 and 4

User
removed
second
cell after
execution

Figure 5: An example of a hidden state in Jupyter Notebook with three different execution
variations

present in the notebook’s creation and evolution. Managing provenance in
Jupyter Notebook differs from traditional systems due to its iterative and
non-linear nature. In a notebook, users can execute cells in any order, creat-
ing challenges in tracking the execution history and dependencies [69]. Addi-
tionally, Jupyter notebooks merge code, data, and outputs into a single file,
whereas traditional systems follow a sequential execution process that gener-
ates output externally. As traditional systems offer clear execution pipelines
and distinct output demonstrations, provenance management becomes more
straightforward. In contrast, Jupyter notebooks require specialized tools
for managing provenance to capture dynamic state changes and overwritten
variables [68, 74].

Researchers developed provenance detection techniques specialized for
Jupyter Notebook to reuse notebooks by obtaining the original results. In the
early stage of Jupyter Notebook usage, Pimentel et al. [117] proposed a note-
book tool to overcome the limitations in provenance support by automatically
capturing and analyzing the execution history and environment settings of
code within notebooks. The study extends the noWorkFlow tool [102] de-
veloped for Python scripts to capture the provenance of scripts, including
control flow information and library dependencies. The proof can be inferred
by statically analyzing code cells on execution counts and cell positions within
the notebooks [74]. A scheduler that adjusts the order of cell execution based
on data dependencies detected during runtime can be used to improve the
accuracy of provenance of Python code in notebooks [28].

In addition to focusing on tools and execution kernels, researchers have
developed extensions to capture provenance. MLProvLab [68] is a JupyterLab
extension to track, manage, compare and visualize the provenance of compu-
tational experiments. It can capture the provenance at run-time by detecting

28



dependency graphs. Another notebook extension, ProvBook, was designed to
capture and visualize the provenance of notebook executions [137]. This ex-
tension automatically stores provenance information within the notebook’s
metadata, detailing execution times, inputs, and outputs for each cell. It
helps users to see how data and analysis have evolved over time and compare
results, which helps to enable notebook reproducibility. Kery and Myers [66]
developed an extension named Verdant that records the history of all previ-
ous changes in a notebook and quickly retrieves versions of a specific artifact
from the existing versions of the entire document. It can help to compare
multiple versions of different notebook artifacts, including code cells, tables,
and images, which are absent in traditional version control systems like Git.

Expanding on these efforts, Studtmann et al. [154] introduced Histree for
automatic versioning and visual branching of notebook modifications. It or-
ganizes experiment histories into tree-based structures for easier navigation.
Further extending provenance into interactive visual analytics, Gadhave et al.
[37] proposed Persist, which captures interaction provenance across code and
visualizations. Empirical evaluations showed improvements in analysis ef-
ficiency, accuracy, and reproducibility. Finally, Retrograde [54] integrates
provenance tracking with fairness auditing. It provides real-time, context-
aware notifications triggered by notebook events and maintains a dynamic
data ancestry graph, helping users detect and address fairness and bias con-
cerns during data preprocessing and modeling.

Summary of code reuse and provenance

Code reuse in Jupyter notebooks is essential for improving productivity
and collaboration while addressing the challenges associated with their
unique structure and iterative workflows. Users can more effectively
leverage existing resources and maintain reusable notebooks through
techniques such as code cloning, context-aware code search, provenance
management, reproducibility practices, and advanced versioning tools.
The development of innovative solutions, such as context-sensitive code
search tools [84, 85], code dependency resolution systems [178], and
provenance tracking extensions [68, 117, 54], highlights ongoing efforts
to support effective code reuse and provenance. By integrating these
solutions and best practices (see Table 5), notebooks can become more
reusable and maintainable, thus establishing a stronger foundation for
data science workflows and collaborative research.

29



5.2. Managing Computational Environment and Workflow

Managing the computational environment and workflow in Jupyter note-
books is crucial to ensure the successful execution and reproducibility of data
science tasks [118, 92]. Unlike traditional programming environments, which
are typically well defined and managed by integrated development environ-
ments or build systems, a Jupyter Notebook does not have a separate file
to manage the configuration [72]. Traditional programming environments
commonly include a configuration file (e.g., “requirements.txt” in Python)
to ensure a consistent and reproducible setup for code execution. In contrast,
Jupyter notebooks execute code cells independently, and each notebook has
its own dependencies [25, 124]. This section explores various aspects of com-
putational environment management, including empirical studies on note-
book workflows, the impact of different environments on code behaviour,
and the challenges associated with managing library dependencies.

5.2.1. Empirical Studies on Workflows

Lau et al. [78] analyzed 60 notebooks and summarized four main stages
of a data science workflow: importing data into notebooks, writing and edit-
ing code, running the code to generate output, and publishing the results.
However, workflows can vary. For example, notebooks often start with explo-
ration, where users write lots of code to find interesting patterns in the data,
and end with a presentation or explanation [124]. In addition, recent em-
pirical analyses have shed further light on workflow diversity. Golendukhina
and Felderer [43] studied 138,376 Kaggle notebooks and identified signifi-
cant variations in data preprocessing practices correlated with user expertise,
highlighting a notable gap between model-centric activities and actual data
cleaning efforts. Similarly, Zou et al. [205] uncovered that data scientists
frequently and manually experiment with alternative ML pipeline configura-
tions (e.g., data preparation, model selection), emphasizing the limitations
of managing and systematically exploring pipeline variations in traditional
notebook environments. On the other hand, Psallidas et al. [118] identi-
fied two types of pipelines in Jupyter notebooks that are key components
of data science workflows: explicit and implicit. Explicit pipelines utilize
tools like sklearn.pipeline to define structured steps for tasks such as data
pre-processing and model training. In contrast, implicit pipelines rely on ad
hoc function calls with libraries such as Pandas to clean, merge, and visualize
data [118]. Researchers have also suggested ways to map workflows to better
understand how notebooks work. One approach uses directed acyclic graphs

30



to show the flow of data and tasks within a notebook [130]. These graphs
can highlight where variables are reused (if a cycle exists) or how tasks are
connected. Another solution is a Jupyter Notebook extension that assigns
unique IDs to each cell, making it easier for users to track how cells depend
on each other [75]. These tools help manage and simplify the often complex
workflows in notebooks.

5.2.2. Computational Environments in Notebooks

The computational environment refers to the environment in which Jupyter
notebooks run [72]. This environment can affect the code execution process
because different execution environments may have different dependencies,
causing inconsistencies in code behaviour [31]. Researchers have found that
data scientists face computational environment-related challenges through-
out the analytics workflow, from setting up the notebook to deploying it to
production [21].

Although notebooks typically run in a single computational environment,
there are advantages to running a notebook in multiple computational envi-
ronments [25, 31]. For example, parts of a notebook, such as model training
algorithms, may require specialized computational resources that are unavail-
able in a standard environment designed primarily for data exploration or
visualization. Cunha et al. [25] presented a solution developed as a Jupyter
Notebook extension to automatically determine and migrate selected note-
book cells to appropriate computational environments for execution. Their
solution leverages abstract syntax trees and dependency tracking to extract
the selected notebook cells and the dependencies. Another study discussed
the possibility of automating the migration of a computational environment
for Jupyter notebooks to a distributed Kubernetes12 environment [31]. This
approach aims to overcome the limitations of Jupyter notebooks, such as scal-
ability and fault tolerance, by dividing notebooks into executable steps and
deploying them in a Kubernetes cluster. In addition, ElasticNotebook [88, 86]
provides live migration through optimized checkpointing and restoration to
reduce migration overhead. Expanding this concept further, Kinanen et al.
[70] introduced a custom Jupyter kernel to simplify offloading quantum com-
putation tasks directly from the notebook to remote Kubernetes clusters,
thus lowering access barriers to high-performance quantum computing with-

12https://kubernetes.io/

31

https://kubernetes.io/


out requiring deep infrastructure expertise.
Recognizing security as a crucial factor in computational environment

design, researchers have explored specific strategies for improving Jupyter
notebook security. For instance, Lu et al. [92] proposed an architectural se-
curity framework leveraging containerization, load balancing, authentication,
and encryption mechanisms, thus safeguarding sensitive data within cloud-
based notebook execution environments. In addition, Ramsingh and Verma
[128] conducted empirical analyses revealing gaps in current notebook secu-
rity practices, such as poor awareness of threats and insufficient technical
expertise. Based on their findings, they proposed the Jupyter multi-layer
security (JMLS) defence model explicitly designed to reinforce notebook se-
curity. Complementing these perspectives, Cao [16] developed a systematic
taxonomy to classify and better understand the variety of network-based se-
curity threats impacting Jupyter notebooks, especially in high-performance
computing (HPC) scenarios. Their exhaustive analysis highlighted vulner-
abilities involving ransomware, data exfiltration, misconfiguration, and re-
source misuse, providing insights for secure management of computational
environments.

Researchers have also investigated various computational environments
to tackle Jupyter Notebook reproducibility and usability issues. Sato and
Nakamaru [141] addressed reproducibility issues arising from potentially un-
safe dynamic notebook modifications by developing Multiverse Notebook, a
computational environment that enables safe and efficient “time-travel” (cell-
wise checkpointing) based on the POSIX “fork()” mechanism, where a pro-
cess is assigned to each executed cell and a process tree is maintained as the
entire state. To address hidden state and out-of-order execution issues, Wein-
man et al. [189] created a notebook extension that allows for easy branching
(or “forking”) of execution states into separate kernel instances to simplify
concurrent exploration of different analytical approaches. Furthermore, Li
et al. [87] introduced Kishu, which employs namespace-patching techniques
to efficiently revert or undo notebook states without resorting to costly kernel
restarts or complete re-executions. To improve Jupyter notebook usability
and integration into software development workflows, Titov et al. [160] ex-
plored strategies for integrating computational notebooks within IDEs to
better align interactive and exploratory notebook usage with standard soft-
ware engineering practices. Complementarily, acknowledging the cognitive
and operational challenges inherent in mixed-methods research workflows,
Zhu et al. [204] proposed design concepts for notebook environments that

32



more effectively integrate qualitative and quantitative analysis tasks, thereby
streamlining hybrid analytical processes.

5.2.3. Managing Library Dependencies

Managing dependencies in Jupyter notebooks is crucial not only to en-
sure their reproducibility, but also to ensure their functionality. To address
this challenge, researchers have developed various tools. For example, Snif-
ferDog is a dependency management tool that restores notebook execution
environments by automatically identifying the required libraries and their
compatible versions [180]. This tool leverages a comprehensive API bank to
analyze Python code and make notebooks executable and reproducible. Sim-
ilarly, Davos simplifies dependency management by dynamically installing
and updating the correct library versions directly within notebooks, resolving
common issues such as version mismatches [35]. Another tool, RELANCER,
employs an automatic technique that restores the executability of broken
Jupyter notebooks by upgrading deprecated API calls to non-deprecated
ones [203].

Additionally, a framework that monitors Linux kernel system calls cap-
tures specific versions of dependencies to ensure that the computational envi-
ronment can be precisely recreated across systems, addressing failures caused
by missing or incompatible libraries [185]. These tools collectively aim to re-
duce the manual effort involved in dependency management, improving the
reliability of notebooks in diverse computational settings.

5.2.4. Performance Analysis

Performance analysis in Jupyter notebooks addresses the efficient execu-
tion of notebook code. Werner et al. [190] developed a tool for Jupyter note-
books that measures the execution time and memory usage of individual cells.
This tool can identify inefficiencies in runtime or the resource consumption
of a notebook to detect performance issues and provide detailed feedback,
enabling users to pinpoint resource-intensive areas for refining their code.
Extending this idea further, Werner et al. [191] introduced JUmPER, which
combines coarse-grained performance monitoring with fine-grained instru-
mentation for interactive HPC workflows. In addition, JUmPER leverages
parallel marshalling and in-memory communication methods to minimize in-
strumentation overhead.

33



Summary of managing computational environment and workflow

Managing the computational environment and workflow in Jupyter
notebooks is critical to ensuring smooth execution. Empirical stud-
ies show that notebook workflows typically involve iterative processes,
from importing data and editing code to generating output and shar-
ing results [78, 124]. Tools, such as directed acyclic graphs and unique
cell identifiers, have been introduced to help map workflows and man-
age dependencies between cells [130]. Researchers developed an effi-
cient computational notebook engine for enabling cell-wise checkpoint-
ing [141]. Researchers have also explored solutions for adapting note-
books to different computational environments, including tools for mi-
grating cells to distributed platforms such as Kubernetes [31] and sys-
tems such as Elastic-Notebook [88] for checkpointing and restoration.
In addition, managing library dependencies remains a key focus, with
tools such as RELANCER [203], SnifferDog [180], and Davos [35] au-
tomating the resolution of API issues and ensuring consistency across
environments. These advancements address the unique challenges of
Jupyter notebooks, making them more reliable and scalable.

5.3. Readability of Notebooks

The readability of notebooks has two central dimensions: (1) the readabil-
ity of the code in the notebook, which focuses on the clarity, organization and
quality of the written code [90], and (2) the readability of the notebook nar-
rative, which emphasizes how effectively the text and the output explain the
workflow and analysis [133]. Unlike traditional source code files, notebooks
integrate iterative code execution, visual output, and narrative explanations,
contributing to a distinctively different in nature narrative-driven coding en-
vironment [135]. Researchers have addressed notebook readability challenges
through various practices and tools, with the aim of improving both code and
narrative readability.

5.3.1. Refactoring

Refactoring helps enhance readability by focusing primarily on improving
the clarity and organization of the notebook’s code itself. Due to Jupyter
Notebook’s distinctive characteristics, such as the cell-based structure and
the iterative nature of cell-wise execution [90], traditional software refac-
toring methods may not always be directly applied. Often, notebooks are

34



developed with a focus on completing the final data analysis, and little at-
tention is paid to code refactoring, as users prioritize drawing conclusions
and sharing results [135]. This approach leads to “messy” notebooks, which
are disorganized and poorly structured, and characterized by scattered cell
arrangements, excessive inline outputs, and a lack of modularity [55]. Messy
code reduces readability, makes notebooks harder to maintain, and com-
plicates tracing the steps that produced the results, which can ultimately
discourage sharing and collaboration [133, 55].

To address these issues, refactoring practices are employed to improve
notebook readability and maintainability. Researchers found that the com-
mon refactoring practices in notebooks are extracting functions, reordering
cells, renaming notebooks, splitting cells, and merging cells [90]. In another
study, Dong et al. [30] expanded this list of refactorings by identifying addi-
tional activities such as removing commented blocks, adding comments, and
renaming variables. These refactoring practices are not universally applied
but vary depending on the authors’ backgrounds (e.g., data scientists versus
computer scientists) [90]. These also vary from the intended use of the note-
book [29]. Dong [29] noticed that notebooks for sharing results with others
saw mostly refactorings related to Markdown, whereas, for production note-
books, the most refactorings occurred in the logical code in the transition
between notebook and Python file.

In addition, tools such as nbslicer, a hybrid static-dynamic slicing tool,
were developed to help cleaning and re-executing notebooks more effec-
tively [146]. Using backward and forward program slicing, nbslicer helps
reduce messy code and improves the efficiency of refactoring while address-
ing challenges such as achieving accurate program slices without excessive
overhead or performance issues. These tools and practices collectively aim to
improve the readability and maintainability of Jupyter notebooks. Another
tool named ReSplit helps to split the notebook code cell so that coherent
code lines are placed together [159]. In the first step, the algorithm of that
tool suggests merging some of the cells, and in the second step, it suggests
extracting specific code fragments from the original cells into new ones [159].

Refactoring should not affect the functionality of the code. However, ver-
ifying the correctness of a notebook after refactoring can be challenging. For
example, when code clones are refactored into functions, users must ensure
that the output remains consistent. To address this issue, [140] proposed a
method to verify correctness by comparing API calls and textual output to
ensure that the same API calls with identical parameters produce consistent

35



Figure 6: A screenshot of the StickyLand tool, which helps to place notebook cells in any
orientation (not in a fixed top-to-bottom position) (taken from https://github.com/

xiaohk/stickyland)

results, simplifying the validation process.

5.3.2. Nonlinear Visualization of Notebooks

While refactoring primarily focuses on code readability, nonlinear visu-
alization focuses on improving readability through narrative clarity and in-
teractive structuring. Due to the inherent cell-based organization of Jupyter
notebooks which follow a linear, top-to-bottom format, the narrative of note-
books can sometimes limit readability. Researchers addressed narrative read-
ability by proposing nonlinear organization tools that enable visualization
and organization beyond the linear convention. For example, tools such as
StickyLand [183] and ToonNote [64] allow users to rearrange notebook cells
based on their priorities, such as by grouping related sections or highlight-
ing key parts of the workflow. These tools offer new options for organizing,
navigating, and displaying notebooks.

StickyLand [183] provides a visual interface where users can freely drag
and drop cells to create a customized layout, breaking away from the conven-
tional top-to-bottom order. This allows users to better align the notebook’s
structure with their thought process or the natural flow of their analysis.
Figure 6 demonstrates how StickyLand transforms the notebook interface

36

https://github.com/xiaohk/stickyland
https://github.com/xiaohk/stickyland


into a more intuitive and visually organized workspace.
Furthermore, Chattopadhyay et al. [20] explored the cognitive processes

involved in understanding computational notebooks, identifying key tasks
such as comprehension, mental modelling, and contextual inference. They
mapped these tasks to practical design elements, including navigation panels,
annotations, and structured titles, and incorporated these elements into Por-
poise, an interactive overlay tool specifically designed to enhance notebook
sense making and navigation.

Summary of readability of notebooks

Notebook readability refers to readability and organization of code and
other content within Jupyter notebooks. Researchers have examined
refactoring practices to improve code readability, such as reorganizing
cells, extracting functions, and splitting or merging cells. Tools such
as nbslicer [146] and ReSplit [159] support these efforts by providing
semi-automated solutions to clean up and optimize notebook struc-
tures. Moreover, tools such as StickyLand [183] and ToonNote [64]
facilitate non-linear visualization of notebooks, enabling users to or-
ganize cells and better reflect their analytical processes dynamically.
Collectively, these advancements improve the readability and main-
tainability of Jupyter notebooks.

5.4. Documentation of Notebooks

Research on notebook documentation is crucial because Jupyter Note-
book allows combining code with narrative, data visualization, and exploratory
analysis in a way that traditional source code files do not [72]. However, note-
book users often pay attention only to the code without creating or updating
their documentation [174]. For our purposes, we define documentation to
include any content within Markdown cells and comments in code cells. In
this section, we will discuss the key areas that researchers have explored re-
garding notebook documentation, including document generation, cell header
creation, and storytelling.

5.4.1. Empirical Studies on Documentation

Integrating explanatory text in notebook documentation is essential to
improve the understandability and shareability of notebooks. These texts

37



make a well-documented notebook that describes workflows, provides con-
text, and explains the purpose of code. Although studies have shown that
almost all notebooks (99%) include at least one Markdown cell [135], the qual-
ity of documentation inside markdowns is not up to mark [172]. To improve
notebook documentation, Wang et al. [172] analyzed highly voted notebooks
and identified nine guidelines for Markdown content (such as adding sections
or subsections) in notebooks. Researchers also showed that although using
code comments can enhance readability by organizing and annotating the
flow of code [125], only a small fraction of notebooks use comments to ex-
plain the reasoning (10%) or expected results (4%) of the corresponding code
cells [135, 136].

5.4.2. Documentation Generation

Researchers developed several tools to generate notebook documenta-
tion. To tackle the challenge of insufficient documentation in data science
notebooks, Themisto, an AI system to generate code documentation, has
been proposed [174, 169]. It works in three phases, i.e., retrieving relevant
API documentation, generating documentation automatically, and prompt-
ing users to add their documentation. Themisto was reported to reduce doc-
umentation time, increase user satisfaction, and encourage documentation of
previously overlooked code. Another tool HAConvGNN, uses a hierarchical
attention mechanism to focus on relevant code snippets and tokens for accu-
rate documentation generation [91]. In addition, Cell2Doc uses ML pipelines
to generate documentation for code cells [100] and InkSight [89] documents
insights from charts using sketch-based interactions. To enhance the quality
and relevance of automatically generated documentation, Ghahfarokhi et al.
[41] proposed a CNN-RNN-based approach leveraging diverse code metrics
(such as cell complexity and API popularity). Empirical results from Muller
et al. [101] show that in 41% of the cases, users still need to modify auto-
matically generated notebook documentation.

Storytelling for Jupyter notebooks takes documentation even further by
transforming raw analyses into coherent narratives tailored for communica-
tion. For instance, Notable [81] automates the generation of narrative presen-
tation slides directly from the notebooks. Addressing the related challenge of
slide creation from disorganized computational notebooks, Wang et al. [175]
introduced OutlineSpark to generate slides through interactive outlining and
computational support. Going one step further, Ouyang et al. [107] proposed
NotePlayer, which bridges notebook cells with dynamic video segments by

38



integrating computational engines and LLM-generated narrations, address-
ing the problem of excessive manual effort traditionally required for detailed
tutorial video creation.

5.4.3. Cell Header Generation

In notebooks, a cell header is typically a Markdown cell that defines
section titles or headings, which helps organize and structure the notebook
more effectively. Cell headers often utilize Markdown syntax (e.g., # or
##) to create hierarchical headers, enhancing the readability and navigabil-
ity. Unlike standard documentation generation, which focuses on providing
detailed explanations, inputs, or outputs, cell headers primarily serve to vi-
sually structure the flow of the notebook [165]. These headers act as naviga-
tional aids, dividing the notebook into logical sections to improve readability
and guide users through the workflow. Venkatesh et al. [167, 166] intro-
duced an automatic cell header generation tool HeaderGen, which analyzes
the functions and call graphs of the notebook code to generate appropriate
headers for the notebook cells. Venkatesh and Bodden [165] published an
early prototype of the HeaderGen tool that can automatically create headers
in Markdown cells using static analysis of the code cells, even without pro-
viding specific details about the Markdown text documentation. Extending
beyond static analysis, Perez et al. [111] proposed a hybrid approach called
JUPYLABEL, which incorporated both rule-based heuristics and decision-
tree classifiers to classify and label notebook cells to generate headers.

Summary of documentation of notebooks

Research on notebook documentation in Jupyter notebooks addressed
integrating explanatory text to enhance understandability and share-
ability. In documentation generation, ML models help automate the
process, with tools such as Themisto [174] and HAConvGNN [91] which
use ML to generate comprehensive documentation based on code struc-
ture and content. Research has explored human interaction with AI-
generated text, highlighting the need for human intervention to im-
prove the quality of generated documentation. Cell header generation
focuses on automatically generating headers to improve notebook nav-
igability and usability, exemplified by tools such as HeaderGen [167]
and JUPYLABEL [111].

39



5.5. Testing and Debugging

Jupyter notebooks are widely used for prototyping, offering rapid itera-
tion and immediate feedback [34]. However, testing in notebooks differs from
traditional software testing, as it may require verifying code correctness at
the cell level rather than treating the entire notebook as a single executable
unit. Due to the lack of standardized testing practices, data scientists have
adopted various approaches. For example, some embed test cases within
the notebook, while others use separate test notebooks to verify the correct-
ness [21]. This section describes studies related to the testing of notebooks,
including empirical studies on bug analysis and bug detection.

5.5.1. Empirical Studies on Testing Notebooks

De Santana et al. [26] empirically analyzed the problems and challenges of
identifying, diagnosing and resolving bugs in Jupyter notebooks. They pre-
sented the first comprehensive study of bugs in Jupyter Notebook projects,
analyzing bugs in GitHub repositories and Stack Overflow posts, and inter-
views with data scientists. The study identifies eight types of bugs that are
found in notebooks along with their studies. Shome et al. [147] investigated
feedback mechanisms within ML-focused Jupyter notebooks and presented
a taxonomy of explicit (assertions) and implicit (print statements and last
cell outputs) feedback approaches. Their study also provided practical rec-
ommendations to encourage explicit testing for minimizing technical debt
and improving reproducibility. Wang et al. [182] analyzed crashes in ML
notebooks and categorized predominant exceptions such as NameError and
ValueError. In addition, they reported that some root causes of these excep-
tions are related to the features of Jupyter Notebook, such as out-of-order
cell executions and errors propagating from previous cells.

5.5.2. Detecting Bugs

Detecting bugs or errors in Jupyter Notebook presents unique challenges
due to nonlinear workflows and hidden states, distinguishing them from tra-
ditional programming environments [132]. Xin et al. [196] developed a frame-
work to detect anomalies and identify their root causes by combining prove-
nance data with performance metrics. Since Jupyter notebooks do not offer
a built-in debugger, the study also presents strategies for debugging Jupyter
notebooks by identifying cell workflows and the root cause of errors. An-
other bug-detecting study introduced a tool called Vizier, which helps debug
notebooks by maintaining a complete version history of notebooks, cells, and

40



Table 6: Types of bugs in Jupyter notebooks

Bug Type Description Study

Processing bugs Issues in memory or computation, i.e., memory overflow, data
loss, or performance degradation.

[155, 103, 197,
181, 196]

Implementation
bugs

General coding errors that can cause incorrect results or run-
time errors, i.e., syntax, logic, variables, or algorithms-related
bugs.

[109, 12, 47, 45]

Cell defect Bugs related to notebook cell renderings, i.e., code cells, Mark-
down, or output interactions.

[34]

Environments
and settings bugs

Problems from misconfigured environments or dependencies
that interrupt notebook execution, i.e., missing libraries or
lack of dependencies.

[12]

Kernel bugs Issues related to the Jupyter kernel, such as crashing, freezing,
or failure to start that can interrupt execution.

-

Conversion bugs Errors during notebook conversion from .ipynb file type to
other formats, i.e., Nbconvert bugs.

-

Portability bugs Failures when running notebooks in different environments,
i.e., rendering problems.

-

Connection bugs Failures connecting to external systems like databases or APIs
that can block data access and interrupt workflows.

-

datasets, while tracking potential errors through fine-grained provenance [12].
This tool maintains a complete version history for each notebook and allows
reproducible data manipulation through a spreadsheet mode [12].

Another method to detect potential bugs in notebooks is to focus on
inconsistencies in variable assignments, output visualization, or logical oper-
ations within the notebook [109]. For example, output inconsistency occurs
when the output of a notebook cell does not match the expected output. An
implementation of such an inconsistency-based approach is the nbval note-
book validation plugin [34]. nbval detects bugs in Jupyter notebooks by
automatically executing each code cell and comparing its output with previ-
ously stored results. If there is any deviation, such as an unexpected change
in numerical values, formatting differences, or execution failures, nbval re-
ports a test failure. Wang et al. [181] showed that traditional static ana-
lyzers frequently fail to detect runtime tensor shape mismatch bugs in ML
codes (particularly TensorFlow) within notebooks. Their study demonstrates
how incorporating runtime information improves static analysis capabilities
for detecting such common ML-related notebook bugs.

Another type of inconsistency bug is the name-value inconsistency, which
occurs when the name of a variable does not accurately reflect its assigned
value. Unlike traditional software development environments, notebooks al-
low for nonlinear execution and frequent variable reuse, increasing the risk

41



of such name-value inconsistencies [109]. For instance, naming a variable
log file while storing a list of all files in a directory can cause a name-value
inconsistency bug, as a developer might assume that log file stores a sin-
gle file name, but it actually contains a list. To avoid confusion, the variable
could be renamed to log files or log file list. Patra and Pradel [109]
developed Nalin, an automated tool for detecting name-value inconsisten-
cies. This tool uses a neural model to predict whether a variable’s name
and its assigned value are consistent. Nalin employs dynamic program anal-
ysis alongside deep learning to monitor variable activities throughout the
execution process.

Recently, advancements in LLMs have created promising opportunities
for automated error detection and debugging. Grotov et al. [47] performed
a detailed analysis of prevalent notebook error patterns and proposed an it-
erative, LLM-based method for detecting and dynamically resolving errors.
Furthermore, Grotov et al. [45] developed an LLM-powered AI agent specif-
ically designed to handle stateful and nonlinear notebook debugging cases,
demonstrating that agent-based debugging can effectively resolve complex er-
rors in computational notebooks. Their research also highlights the need to
balance automation with human oversight, carefully manage interface com-
plexity, and address security considerations (e.g., sandboxing).

5.5.3. Detecting Data Leakage

In data science projects, data leakage occurs when information from out-
side the training dataset is used to develop a model [155]. This issue can
arise in Jupyter Notebook if code cells are executed in the wrong order. Al-
though executing cells in an arbitrary sequence may seem harmless, it can
lead to data leakage bugs, such as unintentionally sharing information be-
tween the training and test datasets. To provide warnings about potential
data leakage, a static analysis framework has been developed that uses ab-
stract interpretation for intracell static analysis, ensuring both efficiency and
guaranteed termination [155]. Data leakage in ML can be detected early in
Jupyter notebooks by turning dataframe operations across cells into a graph.
Negrini et al. [103] showed that building such a graph-based model can cap-
ture dataframe operations across all notebook cells in their actual execution
order, allowing them to detect data leakage effectively in Jupyter notebooks.
Yang et al. [197] also tackled data leakage in data science notebooks by de-
veloping a static analysis tool that models how data flows across notebook
cells. This tool tracks the relationships between datasets, transformations,

42



and model evaluation steps to identify common leakage patterns specific to
notebooks, such as the use of test data during preprocessing, the reuse of test
data for model selection (known as multi-test leakage), and overlaps between
training and test datasets.

Summary of testing and debugging

Researchers have focused on developing automated tools designed ex-
plicitly for bug detection in notebooks. Those tools can deal with differ-
ent types of bugs, for example, name-value inconsistencies [109], data
leakage issues [197, 155], and output inconsistency [34]. Researchers
explored LLM-powered solutions for debugging and resolving notebook
errors [45, 47]. However, more research on notebook testing is needed
to deal with other bugs such as performance and kernel-related bugs.

5.6. Visualization in Notebooks

As an important data analysis outcome, visualization is vital in Jupyter
notebooks [145, 2]. It also serves software engineering purposes, as it can
be used to validate the correctness of a notebook by allowing comparisons
between expected and actual outcomes. Additionally, visualization is crucial
for managing and enhancing communication within notebook projects.

5.6.1. Empirical Studies on Visualization in Notebooks

Visualization in notebooks can be divided into two main categories: data
visualization and workflow visualization. Data visualization refers to the
process of displaying the output of a code cell. One of the key features of
Jupyter Notebook is the ability to visualize outputs alongside the code cells.
Researchers showed that one out of four issues (1,071 out of 4,210) in the
studied Jupyter Notebook projects contain at least one visualization-related
issue [2]. The study also noticed that visual content is not limited to com-
municating user interaction design but contains various types of information,
such as command-line content or code snippets. Settewong et al. [145] iden-
tified nine main reasons for visualizing data when notebook users write code.
They analyzed 68 notebooks containing 821 visualizations and categorized
them into nine types, showing that the most frequent use cases are for vi-
sualizing data distribution (e.g., histograms, box plots) and data frequency
(e.g., bar charts, count plots) making these the core tools for understanding
and communicating data insights during coding.

43



In addition, Wootton et al. [194] investigated the exploratory data analy-
sis (EDA) process within Jupyter notebooks and identified distinct temporal
and sequential patterns. They proposed quantitative metrics for measur-
ing visualization usage, including revisit counts, representational diversity,
and representation velocity. Wang et al. [184] showed that effective visual
analytics in notebooks depends not only on what is visualized, but also on
how visualizations are designed to fit the notebook environment. Their study
identified four key design dimensions that shape the user experience, focusing
on how visualizations connect with notebook code, where their data comes
from, when they appear, and how easily they can be reused.

Another type of visualization in notebooks is workflow visualization, which
helps users understand and navigate the structure of notebook code. Ra-
masamy et al. [127] introduced a tool called MARG, which visualizes data
science notebooks as a graph of decisions, forks, and dead-ends instead of a
linear list of cells. This approach reveals the nonlinear nature of real-world
notebooks and allows users to trace the workflow more effectively. Their
study showed that such visualizations significantly improve the understand-
ing of the workflow of data science notebooks.

5.6.2. Interactive Visualization

Interactive visualizations in Jupyter Notebook refer to an interactive in-
terface within notebooks that allows users to analyze data through interac-
tive charts. These features greatly enhance the usability and practicality of
Jupyter notebooks by facilitating real-time analysis, monitoring, and inter-
action with code and output [195, 77]. Interactive visualization also provides
valuable insights and support informed decision-making by integrating vi-
sual analytics directly into the notebook environment. For instance, Scully-
Allison et al. [144] developed a notebook-embedded interactive visualization
that traces and synchronizes visual components with code cells. Furthermore,
Guo et al. [50] developed bonXAI, which integrates interactive explainable
AI (XAI) visualizations into Python-based ML workflows within notebooks.

Researchers have proposed interactive dashboards to help users explore
and analyze their Jupyter notebooks. Kwon et al. [77] developed a customiz-
able interactive dashboard to support data-centric NLP in Jupyter note-
books. Their system includes built-in text transformation operations and
various visual analysis features, allowing users to create interactive dash-
boards seamlessly. Similarly, Wu et al. [195] introduced a flexible visual-
ization dashboard that complements traditional code cells, offering users an

44



intuitive interface for data interaction. By importing the necessary library,
users can generate visualizations by clicking on dataset columns or creating
custom data queries, such as scatter plots. This ensures real-time updates
to code cells based on interactions with the dashboard.

Recent works have also explored extending notebook interaction beyond
traditional desktop interfaces. In et al. [60] investigated adapting computa-
tional notebook interfaces into virtual reality (VR) and introduced embodied
gestures for efficient non-linear exploration to enhance notebook navigation.

Summary of visualization in notebooks

Visualization is essential in Jupyter Notebook for data analysis, re-
sult validation, and effective communication. Research shows that
common applications include visualizing data distributions, statisti-
cal measures, and ML workflows [145, 2]. Researchers demonstrated
that interactive visualizations enhance usability by enabling real-time
interactions with both data and code [195, 77]. Several approaches
have been proposed to trace and synchronize visual components with
notebook code cells [144, 50]. Additionally, nonlinear workflow visual-
izations improve the comprehension of complex notebooks, and while
established guidelines encourage integration, modularity to improve
visual analytics [184, 127, 194].

5.7. Best Practices in Notebooks

It is essential to adhere to best practices in Jupyter notebooks to enhance
code quality and collaborative efforts [149, 46]. Unlike conventional software
development, Jupyter notebooks are often utilized for exploratory data anal-
ysis, often involving frequent adjustments and iterative code execution, re-
sulting in deviations from traditional software development methodologies,
such as waterfall or test-driven approaches [179]. This section underscores
the importance of adhering to best practices in Jupyter notebooks, with
a specific emphasis on ensuring code style consistency and addressing the
unique challenges of collaborative usage, especially within the realm of ML
projects.

5.7.1. Following Code Style Standards

One of the prevalent challenges in Jupyter notebooks is the inconsistency
in code style arising from the absence of enforced coding standards. Re-

45



searchers showed that notebooks have 1.4 times more stylistic issues than
traditional Python scripts [46]. Another study experimentally demonstrated
that Jupyter notebooks are inundated with poor-quality code, such as vio-
lations of recommended coding practices, unused variables, and deprecated
functions [179]. Considering the knowledge-sharing nature of Jupyter note-
books, these poor coding practices might be propagated to future developers.

Researchers have studied the adherence to best practices for coding from
various angles. Siddik and Bezemer [149] evaluated the adherence to the
PEP-8 code style guidelines in ML code in Jupyter notebooks. Their find-
ings indicate that ML notebooks generally exhibit lower code quality than
non-ML notebooks, with notable discrepancies in how packages and libraries
are managed. To address this, a static analysis tool called Pynblint [122, 123]
was implemented to identify quality issues in Jupyter notebooks. In addi-
tion, Candela et al. [15] studied the quality of Jupyter Notebook projects
published by GLAM (Galleries, Libraries, Archives, and Museums) institu-
tions within the cultural heritage sector. Their evaluation criteria focused on
documentation, code readability, and metadata usage, identifying that these
areas need improvement for better traceability and overall quality.

5.7.2. Best Practices for Collaborative Use

Researchers showed that it is necessary to develop and validate best prac-
tices for collaborative notebook use and the tools required to enforce these
practices [119]. Quaranta et al. [121] introduced a catalog of collaboration-
specific best practices for Jupyter Notebook, aiming to improve teamwork,
reproducibility, and code quality in data science workflows. The catalog em-
phasizes practices like using version control, structuring code with modular
functions, documenting with Markdown, cleaning and organizing cells, and
separating exploratory from production notebooks. It also encourages open
sharing and the use of self-contained environments to ensure reproducibil-
ity. To manage editing conflicts during real-time collaboration effectively,
Wang et al. [170] proposed PADLOCK, which provides conflict-resolution
mechanisms such as cell-level and variable-level access control and parallel
cell groups. Their empirical evaluation demonstrated reduced editing con-
flicts and improved support for diverse collaboration styles. Together, these
guidelines and tools support more maintainable and collaborative notebook
development.

46



Summary of best practices in notebooks

Unlike traditional software development environments, Jupyter note-
books often prioritize data processing and exploration, which can lead
to deviations from established software engineering practices. No stud-
ies have identified or explored the ML-specific best practices in note-
books. Building upon the study by Pimentel et al. [116], Grotov et al.
[46], which identified good and bad coding practices, there is a need
for an impact analysis of these coding practices.

5.8. Cell Execution Order

Notebook cells can be executed independently and out of order, making
it challenging for developers to manage the global variables that notebooks
keep persistent in memory [93]. Developers should strive to maintain a lin-
ear order of code execution in Jupyter notebooks, as researchers noticed that
the nonlinear execution order is one of the main challenges while reusing
notebooks [151, 93]. These non-linear executions in Jupyter notebooks cre-
ate difficulties for users in understanding and tracing dependencies between
code cells, which can cause confusion, errors, and challenges in reproducing
results [14]. To address this, Brown et al. [14] introduced Dataflow Note-
books (DFNBs), a system that can locate variable definitions and track vari-
able references as explicit data dependencies to overcome out-of-order cell
executions.

Developing reproducible ML pipelines can also help address notebook
execution order issues. In this context, the ML pipelines in notebooks con-
sist of interconnected code cells where each step of the ML process (such as
preprocessing, model training, and evaluation) is represented as a separate
code cell [61, 99]. Jiang et al. [61] developed an approach to determine the
correct execution order by identifying and extracting the underlying struc-
ture of a notebook by building a labeled dependency graph. In this graph,
each cell is represented as a node labeled with a specific ML stage (e.g.,
data collection, training, evaluation), and edges represent data dependencies
between cells. These labeled cells are then reordered to maintain the ML
pipeline execution flow. A tool named Ploomber has been developed to man-
age and automate the execution sequence of notebook cells [99]. Ploomber
transforms notebooks into a structured format, making a Jupyter notebook
function like a reproducible pipeline with a single execution flow. This tool
allows users to break down large notebooks into smaller, manageable tasks

47



that are connected through a clear execution order. This structured approach
helps prevent common issues associated with out-of-order execution, such as
undefined variables or incorrect data states.

Summary of cell execution order

Nonlinear cell execution in Jupyter notebooks leads to persistent mem-
ory challenges, making it difficult for developers to track variable de-
pendencies and ensure reproducibility [93, 151]. To address this, re-
searchers have developed methods like DFNBs for tracking dependen-
cies [14], and tools like Ploomber [99] to automate and streamline note-
book workflows. Researchers also developed solutions for reproducible
ML pipelines, helping resolve notebook execution order issues [61, 99].

5.9. AI-based Coding Assistance for Notebooks

Jupyter notebooks offer a convenient way to write and execute code in
a single shareable file for exploratory data analysis and insight finding [72].
However, users with limited coding experience may struggle to participate
in the analysis process quickly. AI-based coding assistance for Jupyter note-
books can be a solution for these users by generating code snippets based
on various inputs, such as natural language instructions or notebook con-
texts. Researchers have explored automatic generation of notebook codes
with low-code strategies to support data analysis [22, 201]. For example,
Chen et al. [22] developed a low-code interaction panel to recommend follow-
up questions to guide the next steps in exploratory data analysis [22]. This
approach helps users visualize the structure of their data science workflow
through a tree-based representation of the notebook cells. Notebook users
can generate code cells based on natural language instructions. Yin et al.
[201] proposed an approach to enable users to describe their desired outcome
in English and automatically generate the necessary code. However, this so-
lution is designed specifically for tasks involving the Pandas library. Huang
et al. [58] further expanded code generation methods by developing Data-
Coder, a dual-encoder model that generates contextualized data-wrangling
code cells by encoding textual, code, and tabular data separately to improve
accuracy. Users can also generate notebook code cells by interacting with ap-
propriate UI scaffolds. For instance, Cheng et al. [23] developed BISCUIT,
a JupyterLab extension leveraging ephemeral user interfaces generated by

48



LLMs, enabling interactive elements (e.g., sliders, dropdowns) to facilitate
more understandable and exploratory ML coding tasks.

Beyond code generation, studies have emphasized the importance of me-
diated interactions and enhanced code-cell execution assistance. For edu-
cational environments, George and Dewan [38] introduced NotebookGPT,
embedding GPT interactions within Jupyter notebooks to encourage effec-
tive prompt usage and reduce the direct copying behavior among students
through programmatic mediation strategies. In parallel, efforts have also
been directed toward defining new design approaches for seamlessly integrat-
ing LLM support into notebook workflows, potentially improving productiv-
ity for diverse developer groups [188]. Similarly, Brault et al. [13] demon-
strated a solution for generating new notebooks by retrieving relevant past
experiments based on user-specified problem configurations. Lastly, McNutt
et al. [97] investigated AI-powered notebook assistants which recommend op-
timal code cell execution pathways by analyzing data dependencies alongside
the code itself, highlighting another crucial dimension of notebook assistance
beyond generating code snippets.

Summary of AI-based coding assistance for notebook

AI-based coding assistance in Jupyter notebooks helps users generate
code snippets using natural language instructions or notebook con-
texts. Researchers have explored a range of techniques, including low-
code interaction panels [22, 201], context-aware AI models [58], and
interactive UI scaffolds [23] to streamline notebook code. Addition-
ally, AI-powered assistants integrated into notebooks facilitate code-
cell execution [97], workflow guidance [13], and enhanced user interac-
tions [38] to make notebooks more intuitive for broader audiences.

5.10. Supporting other Programming Paradigms

To support the use of multiple programming languages within a notebook,
researchers have proposed polyglot execution environments [104]. A polyglot
notebook system allows code cells to interact directly with data structures
and invoke functions or methods from different programming languages [104,
114]. This system facilitates direct object sharing and function calling across
different programming languages, eliminating the need for data serialization
between languages. Hence, a polyglot notebook system can improve the

49



interoperability of various programming languages within a single notebook
environment.

Furthermore, block-based visual programming within notebooks provides
a graphical interface for programming, making the structure and logic of the
code visually clear [168]. Integrating block-based programming into Jupyter
notebooks enhances coding practices, simplifies syntax, reduces errors, and
lowers the learning curve for non-expert developers. Verano Merino et al.
[168] proposed this integration to provide a user-friendly interface for pro-
gramming and data science tasks, thus facilitating the adoption of computa-
tional notebooks across different domains. Similarly, Weber et al. [187] devel-
oped a multi-paradigm editor within the Jupyter ecosystem that integrates
graphical and textual views with automated synchronization, demonstrating
enhanced usability, lower workload, and prevention of execution order errors.

Summary of supporting other programming paradigms

Supporting multiple programming paradigms in notebooks enhances
flexibility by enabling cross-language execution and intuitive visual
programming interfaces. For example, polyglot execution environ-
ments enable interaction between multiple programming languages
within a notebook [104, 114]. Additionally, block-based visual pro-
gramming enhances accessibility by providing a graphical interface,
simplifying syntax, and supporting non-expert developers in computa-
tional notebooks [168, 187].

5.11. Datasets of Notebooks

Publicly available datasets of Jupyter notebooks have been instrumen-
tal in advancing research on computational notebooks, enabling large-scale
empirical studies on their usage, quality, and evolution. These datasets typ-
ically include collections of notebooks from platforms such as GitHub and
Kaggle, often annotated with metadata such as commit histories, bug-related
information, or workflow analysis. In our systematic literature review, we dis-
covered 18 distinct datasets that are publicly available. Table 7 lists all the
public datasets of Jupyter notebooks used in the literature, highlighting their
publication years, public URLs, the description of sources, and research ar-
ticles that used them. Among these, 11 were gathered from GitHub, 5 from
Kaggle, and 2 from both GitHub and Kaggle.

50



Table 7: Datasets of Jupyter notebooks used in literature

Year Public URL Description Used by

2024 https://github.com/

ISE-Research/DistilKaggle

542,051 notebooks from Kaggle with
34 code quality metrics

[40, 39]

2024 https://doi.org/10.6084/m9.

figshare.26372140

297,800 ML notebooks from GitHub
and Kaggle to study feedback mech-
anisms (e.g., assertions and print)

[147]

2024 https://zenodo.org/records/

11396773

138,376 notebooks from Kaggle used
to study data preprocessing practices
in ML development

[43]

2024 https://github.com/

Jun-jie-Huang/CoCoNote

58,221 code generation examples
from GitHub Jupyter notebooks to
study data-wrangling

[58]

2024 https://huggingface.co/

datasets/JetBrains-Research/

jupyter-errors-dataset

10,000 GitHub notebooks containing
at least one thrown exception

[47]

2024 https://zenodo.org/records/

15114367

64,031 ML notebooks (61k GitHub,
2.7k Kaggle) with 92,542 crashes

[182]

2024 https://zenodo.org/records/

13836922

113 notebooks containing 342 recom-
mended cells

[7]

2022 https://zenodo.org/records/

6383115

847,881 notebooks from GitHub to
study code structure and style

[46]

2022 https://github.com/

bugs-jupyter/empirical-study

105 notebooks from GitHub with
14,740 bug-related commits

[27]

2021 https://zenodo.org/records/

4468523

248,761 notebooks from Kaggle (the
KGTorrent dataset)

[120, 24, 41,
126, 40, 43]

2021 https://zenodo.org/records/

5109482

267,602 notebooks from Kaggle [121]

2021 https://ibm.biz/Bdfpk6 3,944 notebooks from Kaggle [91]
2021 https://zenodo.org/records/

7109939

470 notebooks from GitHub for an-
alyzing the workflow of data science
code

[127]

2020 https://github.com/SMAT-Lab/

SnifferDog/blob/master/

dataset/all.github.urls

100,000 notebook projects from
GitHub, with 507 notebook projects
which are executed for reproducibil-
ity

[180]

2020 https://zenodo.org/records/

3836691

6,000 notebooks from GitHub with
code clones

[73]

2020 https://osf.io/9q4wp 2,574 notebooks from GitHub [125]
2020 https://figshare.com/s/

4c5f96bc7d8a8116c271

200 notebooks from GitHub with
meaningful commit histories

[90]

2019 https://zenodo.org/records/

2592524

1.4 million notebooks from GitHub [115, 105,
116, 177, 159]

2018 https://library.ucsd.edu/dc/

object/bb2733859v

1.25 million notebooks from GitHub [135, 109, 84]

These datasets vary significantly in size and purpose. Some datasets are
intended for general research on Jupyter Notebook. For instance, the dataset
from Grotov et al. [46] contains 847,881 notebooks from GitHub, supporting
analyses of notebook usage trends. Similarly, the KGTorrent dataset includes
248,761 notebooks from Kaggle, offering insights into the structured use of

51

https://github.com/ISE-Research/DistilKaggle
https://github.com/ISE-Research/DistilKaggle
https://doi.org/10.6084/m9.figshare.26372140
https://doi.org/10.6084/m9.figshare.26372140
https://zenodo.org/records/11396773
https://zenodo.org/records/11396773
https://github.com/Jun-jie-Huang/CoCoNote
https://github.com/Jun-jie-Huang/CoCoNote
https://huggingface.co/datasets/JetBrains-Research/jupyter-errors-dataset
https://huggingface.co/datasets/JetBrains-Research/jupyter-errors-dataset
https://huggingface.co/datasets/JetBrains-Research/jupyter-errors-dataset
https://zenodo.org/records/15114367
https://zenodo.org/records/15114367
https://zenodo.org/records/13836922
https://zenodo.org/records/13836922
https://zenodo.org/records/6383115
https://zenodo.org/records/6383115
https://github.com/bugs-jupyter/empirical-study
https://github.com/bugs-jupyter/empirical-study
https://zenodo.org/records/4468523
https://zenodo.org/records/4468523
https://zenodo.org/records/5109482
https://zenodo.org/records/5109482
https://ibm.biz/Bdfpk6
https://zenodo.org/records/7109939
https://zenodo.org/records/7109939
https://github.com/SMAT-Lab/SnifferDog/blob/master/dataset/all.github.urls
https://github.com/SMAT-Lab/SnifferDog/blob/master/dataset/all.github.urls
https://github.com/SMAT-Lab/SnifferDog/blob/master/dataset/all.github.urls
https://zenodo.org/records/3836691
https://zenodo.org/records/3836691
https://osf.io/9q4wp
https://figshare.com/s/4c5f96bc7d8a8116c271
https://figshare.com/s/4c5f96bc7d8a8116c271
https://zenodo.org/records/2592524
https://zenodo.org/records/2592524
https://library.ucsd.edu/dc/object/bb2733859v
https://library.ucsd.edu/dc/object/bb2733859v


notebooks in data science competitions [120]. Additionally, large-scale collec-
tions such as the 1.4 million GitHub notebooks compiled by Pimentel et al.
[115] and the 1.25 million GitHub notebooks by Rule et al. [135] provide a
comprehensive view of the Jupyter Notebook platform. DistilKaggle [39, 40]
extends KGTorrent, containing 542,051 Kaggle notebooks annotated with 34
code quality metrics.

Specialized datasets, such as the one by De Santana et al. [26], focus
on bug-related commits, including 105 Jupyter notebooks from GitHub with
14,740 associated commits, making it highly relevant for debugging and main-
tenance studies. Similarly, the dataset from Wang et al. [180] emphasizes the
reproducibility of notebooks, while the dataset by Koenzen et al. [73] specif-
ically supports research on code clone detection. Another focused dataset
from Ramasamy et al. [127] provides data science code for analyzing the
workflow. Furthermore, Grotov et al. [47] built a dataset of 10,000 GitHub
notebooks explicitly containing exceptions and error outputs, and Huang
et al. [58] focused on the new task of contextualized data-wrangling code
generation leveraging code, data, and text contexts. Aydin et al. [7] pre-
pared a CelRec-DB dataset containing 342 recommended code cells worked
in Jupyter notebooks. Unfortunately, one of the used datasets [63] was not
accessible due to a permission issue and therefore excluded from the table.

Several recent datasets specifically target ML notebooks to address emerg-
ing research challenges and trends. For instance, Golendukhina and Felderer
[43] curated a dataset of 138,376 Kaggle notebooks that contain ML-specific
data preprocessing API usage based on the KGTorrent dataset [120]. Simi-
larly, Wang et al. [182] collected 64,031 ML notebooks that contain execution
errors (notebook crashes) to support research on debugging practices and er-
ror mitigation. Shome et al. [147] constructed a dataset containing 297,800
ML notebooks from both GitHub and Kaggle, including 89.6 thousand as-
sertions, 1.4 million print statements, and 1 million last cell statements.

52



Summary of datasets of notebooks

Publicly available Jupyter Notebook datasets from GitHub and Kag-
gle serve various purposes, from analyzing overall notebook usage to
studying reproducibility and reusability [180, 73]. Some collections,
such as KGTorrent [120] and DistilKaggle [39, 40], focus on struc-
tured notebook usage, while others, like CelRec-DB [7], capture rec-
ommended code cells. Additionally, some datasets specifically address
machine learning notebooks, supporting research on preprocessing API
usage [43], execution errors [47], and debugging practices [182, 26].

6. Future Research Directions

The future directions of software engineering research on Jupyter Note-
book are vast and have great potential to advance the field of data science
and computational research. In this section, we outline key future research
directions.

Research Direction 1: Improving Jupyter Notebook Code Search through Nat-
ural Language Summarization

As discussed in Section 5.1.2, existing code search techniques in Jupyter
Notebook primarily use keyword matching or deep learning techniques to
search the code directly based on natural language queries [186, 84]. However,
these methods can be further improved by incorporating natural language
summaries of code functionality into the search process. Future research
should explore leveraging LLMs to automate the summarization of individual
notebook code blocks, producing concise and descriptive explanations of their
purposes. Such summaries not only enrich search accuracy, but also aid users
in quickly assessing retrieved results without having to read and interpret the
code directly.

Research Direction 2: Building a Broad Set of Notebook-Specific Code Refac-
toring Tools

In Section 5.3.1, we discuss different code refactoring tools that offer ba-
sic functionalities for notebooks, such as splitting cells [146] and reordering
notebook cells [159]. Future research should expand the capabilities of these
refactoring tools, addressing common patterns such as the distribution of ex-
ploratory workflows across multiple notebooks [135]. In addition, researchers

53



can target other refactoring features such as detecting and eliminating du-
plicate code, extracting reusable functions, and restructuring notebooks by
merging cells to improve the readability and maintainability of notebooks.

Research Direction 3: Generating Documentation for Groups of Dependent
Code Cells

Existing methods for automated documentation generation in notebooks
(discussed in Section 5.4) focus primarily on the generation of documentation
at the individual cell level. For example, Cell2Doc generates Markdown de-
scriptions for single cells [100], and HeaderGen generates structural headings
into the notebook [167]. However, these single-cell approaches often fail to
capture broader contexts or overarching objectives spanning multiple interre-
lated cells that perform tasks collectively. Since notebook users intentionally
cluster related operations into adjacent groups of cells to boost productivity
and organization [183], future research should aim to automatically generate
context-aware documentation for these clusters. Utilizing analysis techniques
such as dependency graph extraction and runtime tracing, researchers can
identify groups of cells and automatically produce Markdown summaries.

Research Direction 4: Designing Automated Bug Detection and Remediation
Tools Tailored to Notebooks

Since bug analysis is crucial to maintaining the quality of Jupyter note-
books (see Section 5.5), future research could focus on developing automated
tools specifically designed for notebook-related bugs. Although some existing
approaches address issues such as name-value inconsistencies detection [109]
and data leakage detection [197], further research is needed to tackle more
complex bugs, such as cell defects and kernel failure. Future studies should
focus on addressing notebook code cell defects, which arise from missing de-
pendencies, incorrect execution order, or undefined variables, as well as ker-
nel crashes, often caused by excessive resource consumption, infinite loops, or
faulty package interactions [26]. Advanced techniques, including static and
dynamic code analysis, execution flow tracking, and visualization-based de-
bugging, can be leveraged to efficiently detect, categorize, and resolve these
bugs.

Research Direction 5: Conducting Empirical Studies on the Impact of Best
Practices for Coding

As outlined in Section 5.7, little is known about the actual influence of fol-
lowing best practices for coding in Jupyter notebooks. Future studies should

54



conduct empirical studies to quantify the effects of following best practices
for coding based on categorized effective and ineffective practices [116]. Sys-
tematic studies comparing compliant and non-compliant notebooks could
provide concrete empirical evidence highlighting the advantages of rigorous
adherence to recommended practices. Such evidence would strongly motivate
wider adoption of disciplined coding standards among notebook users.

Research Direction 6: Detecting and Resolving Duplicate Execution Numbers
in Notebook Cells

In this SLR, we discuss the studies on execution order in Section 5.8, but
we found no existing studies that explicitly address the issue of duplicate cell
execution numbers. This issue occurs when notebook kernels are restarted
or when cells are repeatedly executed without proper tracking, resulting in
identical cell execution indices. Future studies should develop methods for
detecting, tracking and resolving these duplicate execution numbers. Promis-
ing solutions include tools for logging, visualizing, and auditing the complete
notebook execution history, incorporating timestamps and cell dependency
graphs to facilitate clear identification and resolution of duplicate execution
numbers.

Research Direction 7: Enhancing AI-Powered Code Generation and Work-
flow Assistance in Jupyter Notebook

In Section 5.9, we discuss existing solutions for generating code snippets
based on natural language instructions for specific libraries like Pandas [201].
These solutions possess limited scope with a single library and fail to sup-
port broader, multi-library, multi-step data science workflow automation. To
address these limitations, future research should leverage advanced AI tech-
niques (e.g., large language models), to improve conversational AI-powered
assistants for automated code generation by multi-step workflow automation.
For example, interactive low-code panels that recommend follow-up analyt-
ical questions and visualize workflow structures [22] could be refined and
augmented through continuous conversational AI interactions. By dynam-
ically adapting their recommendations based on real-time user inputs and
evolving contexts, these AI-powered assistants could offer more responsive
and intuitive exploratory data analysis experiences for notebook users.

55



7. Threats to Validity

Internal validity: One potential threat to the internal validity of this
study is the subjective selection of studies. While we applied clear inclusion
and exclusion criteria to select the studies related to software engineering
practices in Jupyter Notebook, manual selection may introduce inconsisten-
cies. To mitigate this risk, authors independently labelled the studies and
resolved disagreements through discussion. In addition, the data extraction
form, which defines the information collected on software engineering prac-
tices in Jupyter Notebook, may influence validity. To mitigate this, we refined
the form through collaborative discussion between the first and third authors
to ensure the form aligned with the research questions and adequately cov-
ered the scope. Despite these efforts, some subjectivity is inherent, which we
acknowledge as a limitation of the study.

External validity: While most studies analyzed in this review focus on
Python notebooks, which may limit generalizability, this focus is justified by
the fact that 93% of notebooks available on GitHub are written in Python [63].
This high percentage highlights the relevance of Python-based research within
the broader context of Jupyter Notebook usage. Another concern regarding
external validity is that our findings primarily apply to software engineering
research on Jupyter notebooks. Future research should expand the scope by
investigating other types of research on notebooks to improve the generaliz-
ability of the results.

Construct validity: One potential threat to the construct validity of our
review is related to the study selection process. We conducted a compre-
hensive search of all academic articles listed in the DBLP bibliography, in-
tentionally excluding non-academic sources such as blog posts. The DBLP
bibliography is widely recognized and frequently used by software engineering
researchers to identify relevant articles in systematic literature reviews [193,
32, 82].

Conclusion validity: Conclusion validity threats can occur due to poten-
tial biases in interpreting and synthesizing data, particularly when group-
ing studies under various software engineering topics. This process required
careful interpretation and collaborative discussions between the first and the
third authors to finalize the list of software engineering topics. To minimize
these threats, we utilized a Trello board13 to categorize the studies according

13https://trello.com/

56

https://trello.com/


to different software engineering topics and held regular discussions to reach
a consensus on the final list.

8. Conclusion

In this systematic literature review, we provide a comprehensive overview
of the research landscape of software engineering in Jupyter notebooks. Our
review uncovers critical insights and trends that have shaped the field’s cur-
rent state. We utilized a thorough methodology involving identifying, screen-
ing, and analyzing 146 relevant research articles (supplementary data are
available here14). The most important findings of our study are:

• Most studies were published in conference venues, indicating the field
is rapidly evolving. Interestingly, the most frequent venues were HCI-
related instead of core SE venues. The Conference on Human Factors
in Computing Systems (CHI) published 15 studies, whereas the Inter-
national Conference on Software Engineering (ICSE) published 6.

• Notebook-specific solutions for software engineering issues, such as test-
ing, refactoring, and documentation, are relatively underexplored. For
example, resolving duplicate execution numbers, refactoring inter-notebook
clones, and generating group documentation for coherent code cells are
future directions derived from our study.

• There is a growing need to integrate modern AI-based solutions into
Jupyter notebooks to support various software engineering topics, in-
cluding code search and code generation. By summarizing code func-
tionality and narratives in accessible language, users can more effec-
tively search for the relevance of existing code and facilitate its reuse.
Additionally, incorporating advanced AI models can improve code gen-
eration and management within Jupyter notebooks.

• The majority of replication packages are hosted on GitHub, raising
concerns about long-term availability and adherence to open science
principles, as GitHub repositories can be volatile. In contrast, only
13 studies used permanent repositories such as Zenodo or Figshare,
aligning better with open science best practices.

14https://zenodo.org/records/15226809

57

https://zenodo.org/records/15226809


This systematic review focuses on recent advances in the area of software
engineering applied to Jupyter notebooks. Our analysis and findings can
assist researchers and practitioners in addressing challenges such as effectively
integrating notebooks into production, ensuring seamless code functionality,
and promoting open science principles and reproducibility. By leveraging this
knowledge, researchers can work towards optimizing notebooks for greater
user-friendliness, reliability, and scalability in real-world applications.

References

[1] Adams, K., Vilkomir, A., Hills, M., 2023. A Comparison of Machine
Learning Code Quality in Python Scripts and Jupyter Notebooks. Jour-
nal of Computing Sciences in Colleges 39, 96–108.

[2] Agrawal, V., Lin, Y.H., Cheng, J., 2022. Understanding the Charac-
teristics of Visual Contents in Open Source Issue Discussions: A Case
Study of Jupyter Notebook, in: Proceedings of the 26th International
Conference on Evaluation and Assessment in Software Engineering, pp.
249–254.

[3] Ahmad, R., Manne, N.N., Malik, T., 2022. Reproducible Notebook
Containers using Application Virtualization, in: 18th International
Conference on e-Science (e-Science), IEEE. pp. 1–10.

[4] Al-Gahmi, A., Zhang, Y., Valle, H., 2022. Jupyter in the Classroom:
An Experience Report, in: Proceedings of the 53rd ACM Technical
Symposium on Computer Science Education-Volume 1, pp. 425–431.

[5] Almugbel, R., Hung, L.H., Hu, J., Almutairy, A., Ortogero, N., Tamta,
Y., Yeung, K.Y., 2018. Reproducible Bioconductor Workflows using
Browser-based Interactive Notebooks and Containers. Journal of the
American Medical Informatics Association 25, 4–12.

[6] Amoudi, G., Tbaishat, D., 2023. Interactive Notebooks for Achieving
Learning Outcomes in a Graduate Course: A Pedagogical Approach.
Education and Information Technologies 28, 16669–16704.

[7] Aydin, S., Mertens, D., Xu, O., 2024. An Automated Evaluation Ap-
proach for Jupyter Notebook Code Cell Recommender Systems, in:
Lichter, H., Wild, N., Sunetnanta, T., Anwar, T. (Eds.), Proceedings

58



of the 12th International Workshop on Quantitative Approaches to
Software Quality co-located with the 31st Asia Pacific Software Engi-
neering Conference (APSEC 2024), pp. 4–11.

[8] Ayobi, A., Hughes, J., Duckworth, C.J., Dylag, J.J., James, S., Mar-
shall, P., Guy, M., Kumaran, A., Chapman, A., Boniface, M., et al.,
2023. Computational Notebooks as Co-Design Tools: Engaging Young
Adults Living with Diabetes, Family Carers, and Clinicians with Ma-
chine Learning Models, in: Proceedings of the 2023 CHI Conference on
Human Factors in Computing Systems, pp. 1–20.

[9] Barba, L.A., Barker, L.J., Blank, D.S., Brown, J., Downey, A.B.,
George, T., Heagy, L.J., Mandli, K.T., Moore, J.K., Lippert, D.,
et al., 2019. Teaching and Learning with Jupyter. Recuperado:
https://jupyter4edu. github. io/jupyter-edu-book , 1–77.

[10] Bavishi, R., Laddad, S., Yoshida, H., Prasad, M.R., Sen, K., 2021.
VizSmith: Automated Visualization Synthesis by Mining Data-Science
Notebooks, in: 2021 36th IEEE/ACM International Conference on Au-
tomated Software Engineering (ASE), IEEE. pp. 129–141.

[11] Beg, M., Taka, J., Kluyver, T., Konovalov, A., Ragan-Kelley, M.,
Thiéry, N.M., Fangohr, H., 2021. Using Jupyter for Reproducible Sci-
entific Workflows. Computing in Science & Engineering 23, 36–46.

[12] Brachmann, M., Spoth, W., 2020. Your Notebook is not Crumby
Enough, REPLace it, in: Conference on Innovative Data Systems Re-
search (CIDR), pp. 1–16.

[13] Brault, Y., El Amraoui, Y., Blay-Fornarino, M., Collet, P., Jaillet, F.,
Precioso, F., 2023. Taming the Diversity of Computational Notebooks,
in: Proceedings of the 27th ACM International Systems and Software
Product Line Conference-Volume A, pp. 27–33.

[14] Brown, C., Alhoori, H., Koop, D., 2023. Facilitating Dependency Ex-
ploration in Computational Notebooks, in: Proceedings of the Work-
shop on Human-In-the-Loop Data Analytics, pp. 1–7.

[15] Candela, G., Chambers, S., Sherratt, T., 2023. An Approach to As-
sess the Quality of Jupyter Projects Published by GLAM Institutions.
Journal of the Association for Information Science and Technology .

59



[16] Cao, P., 2024. Jupyter Notebook Attacks Taxonomy: Ransomware,
Data Exfiltration, and Security Misconfiguration, in: SC24-W: Work-
shops of the International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, IEEE. pp. 750–754. doi:10.
1109/scw63240.2024.00106.

[17] Casseau, C., Falleri, J.R., Degueule, T., Blanc, X., 2023. MOON:
Assisting Students in Completing Educational Notebook Scenarios,
in: Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), IEEE. pp. 157–167.

[18] Chandel, S., Clement, C.B., Serrato, G., Sundaresan, N., 2022. Train-
ing and Evaluating a Jupyter Notebook Data Dcience Assistant. arXiv
preprint arXiv:2201.12901 .

[19] Chanson, A., El Outa, F., Labroche, N., Marcel, P., Peralta, V.,
Verdeaux, W., Jacquemart, L., 2022. Generating Personalized Data
Narrations from EDA Notebooks, in: DOLAP, pp. 91–95.

[20] Chattopadhyay, S., Feng, Z., Arteaga, E., Au, A., Ramos, G., Barik,
T., Sarma, A., 2023. Make It Make Sense! Understanding and Fa-
cilitating Sensemaking in Computational Notebooks. arXiv preprint
arXiv:2312.11431 .

[21] Chattopadhyay, S., Prasad, I., Henley, A.Z., Sarma, A., Barik, T.,
2020. What’s wrong with computational notebooks? Pain points,
needs, and design opportunities, in: Proceedings of the 2020 CHI con-
ference on human factors in computing systems, pp. 1–12.

[22] Chen, C., Hoffswell, J., Guo, S., Rossi, R., Chan, Y.Y., Du, F.,
Koh, E., Liu, Z., 2023. WHATSNEXT: Guidance-enriched Ex-
ploratory Data Analysis with Interactive, Low-Code Notebooks, in:
2023 IEEE Symposium on Visual Languages and Human-Centric Com-
puting (VL/HCC), IEEE. pp. 209–214.

[23] Cheng, R., Barik, T., Leung, A., Hohman, F., Nichols, J., 2024.
BISCUIT: Scaffolding LLM-Generated Code with Ephemeral UIs in
Computational Notebooks, in: IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC ’24), IEEE. pp. 13–23.
doi:10.1109/vl/hcc60511.2024.00012.

60

http://dx.doi.org/10.1109/scw63240.2024.00106
http://dx.doi.org/10.1109/scw63240.2024.00106
http://dx.doi.org/10.1109/vl/hcc60511.2024.00012


[24] Choetkiertikul, M., Hoonlor, A., Ragkhitwetsagul, C., Pongpaichet,
S., Sunetnanta, T., Settewong, T., Jiravatvanich, V., Kaewpichai, U.,
2023. Mining the Characteristics of Jupyter Notebooks in Data Sci-
ence Projects, in: 20th International Conference on Mining Software
Repositories: Registered Reports (MSR-RR), IEEE.

[25] Cunha, R.L., Real, L.C.V., Souza, R., Silva, B., Netto, M.A., 2021.
Context-aware Execution Migration Tool for Data Science Jupyter
Notebooks on Hybrid Clouds, in: 2021 IEEE 17th International Con-
ference on eScience (eScience), IEEE. pp. 30–39.

[26] De Santana, T.L., Neto, P.A.D.M.S., De Almeida, E.S., Ahmed, I.,
2024a. Bug Analysis in Jupyter Notebook Projects: An Empirical
Study. ACM Transactions on Software Engineering and Methodology
33, 1–34. doi:10.1145/3641539.

[27] De Santana, T.L., Neto, P.A.D.M.S., De Almeida, E.S., Ahmed, I.,
2024b. Bug Analysis in Jupyter Notebook Projects: An Empirical
Study. ACM Transactions on Software Engineering and Methodology
33, 1–34. doi:10.1145/3641539.

[28] Deo, N., Glavic, B., Kennedy, O., 2022. Runtime Provenance Refine-
ment for Notebooks, in: Proceedings of the 14th International Work-
shop on the Theory and Practice of Provenance, ACM. pp. 1–4.

[29] Dong, H., 2021. A Qualitative Study of Cleaning in Jupyter Notebooks,
in: 29th Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ACM.
pp. 1663–1665.

[30] Dong, H., Zhou, S., Guo, J.L., Kästner, C., 2021. Splitting, Renaming,
Removing: A Study of Common Cleaning Activities in Jupyter Note-
books, in: 2021 36th IEEE/ACM International Conference on Auto-
mated Software Engineering Workshops (ASEW), IEEE. pp. 114–119.

[31] Duan, J., Dennis, S., 2023. Jup2kub: Algorithms and a system to
translate a jupyter notebook pipeline to a fault tolerant distributed
kubernetes feployment. arXiv preprint arXiv:2311.12308 .

[32] Duarte, C.H.C., 2019. The Quest for Productivity in Software
Engineering: A Practitioners Systematic Literature Review, in:

61

http://dx.doi.org/10.1145/3641539
http://dx.doi.org/10.1145/3641539


IEEE/ACM International Conference on Software and System Pro-
cesses (ICSSP), IEEE. pp. 145–154.

[33] Fangohr, H., Beg, M., Bergemann, M., Bondar, V., Brockhauser, S.,
Carinan, C., Costa, R., Fortmann, C., Marsa, D.F., Giovanetti, G.,
et al., 2019. Data Exploration and Analysis with Jupyter Notebooks,
in: International Conference on Accelerator and Large Experimental
Physics Control Systems, pp. 799–806.

[34] Fangohr, H., Fauske, V., Kluyver, T., Albert, M., Laslett, O., Cortés-
Ortuño, D., Beg, M., Ragan-Kelly, M., 2020. Testing with Jupyter
Notebooks: NoteBook VALidation (nbval) Plug-in for PyTest. arXiv
preprint arXiv:2001.04808 .

[35] Fitzpatrick, P.C., Manning, J.R., 2023. Davos: a Python “smuggler”
for Constructing Lightweight Reproducible Notebooks. SoftwareX 25,
1–13.

[36] Fruchart, M., Guinhouya, B., Pelayo, S., Vilhelm, C., Lamer, A., 2022.
Jupyter Notebooks for Introducing Data Science to Novice Users, in:
Challenges of Trustable AI and Added-Value on Health. IOS Press, pp.
823–824.

[37] Gadhave, K., Cutler, Z., Lex, A., 2024. Persist: Persistent and
Reusable Interactions in Computational Notebooks. Computer Graph-
ics Forum 43. doi:10.1111/cgf.15092.

[38] George, S.D., Dewan, P., 2024. NotebookGPT – Facilitating and Mon-
itoring Explicit Lightweight Student GPT Help Requests During Pro-
gramming Exercises, in: Companion Proceedings of the 29th Inter-
national Conference on Intelligent User Interfaces, ACM. pp. 62–65.
doi:10.1145/3640544.3645234.

[39] Ghahfarokhi, M.M., Asadi, A., Asgari, A., Mohammadi, B., Rizi, M.B.,
Heydarnoori, A., 2024a. Predicting the Understandability of Compu-
tational Notebooks through Code Metrics Analysis. arXiv preprint
arXiv:2406.10989 .

[40] Ghahfarokhi, M.M., Asgari, A., Abolnejadian, M., Heydarnoori, A.,
2024b. DistilKaggle: A Distilled Dataset of Kaggle Jupyter Note-
books, in: Proceedings of the 21st International Conference on Mining

62

http://dx.doi.org/10.1111/cgf.15092
http://dx.doi.org/10.1145/3640544.3645234


Software Repositories (MSR ’24), ACM. pp. 647–651. doi:10.1145/
3643991.3644882.

[41] Ghahfarokhi, M.M., Khademian, A., Kianiangolafshani, S., Asadi, A.,
Jahantigh, H., Heydarnoori, A., 2024c. Beyond Syntax: Unleashing
the Power of Computational Notebooks Code Metrics in Documenta-
tion Generation, in: Proceedings of the IEEE/ACM 3rd International
Conference on AI Engineering - Software Engineering for AI (CAIN
’24), ACM. pp. 278–279. doi:10.1145/3644815.3644979.

[42] Gharehyazie, M., Ray, B., Keshani, M., Zavosht, M.S., Heydarnoori,
A., Filkov, V., 2019. Cross-project Code Clones in GitHub. Empirical
Software Engineering 24, 1538–1573.

[43] Golendukhina, V., Felderer, M., 2024. Unveiling Data Preprocessing
Patterns in Computational Notebooks, in: 50th Euromicro Confer-
ence on Software Engineering and Advanced Applications (SEAA ’24),
IEEE. pp. 114–121. doi:10.1109/seaa64295.2024.00025.

[44] González-Albo, B., Bordons, M., 2011. Articles vs. Proceedings Papers:
Do they Differ in Research Relevance and Impact? A Case Study in
the Library and Information Science Field. Journal of Informetrics 5,
369–381.

[45] Grotov, K., Borzilov, A., Krivobok, M., Bryksin, T., Zharov, Y., 2024a.
Debug Smarter, Not Harder: AI Agents for Error Resolution in Com-
putational Notebooks. arXiv preprint arXiv:2410.14393 .

[46] Grotov, K., Titov, S., Sotnikov, V., Golubev, Y., Bryksin, T., 2022.
A Large-Scale Comparison of Python Code in Jupyter Notebooks and
Scripts, in: 19th International Conference on Mining Software Reposi-
tories (MSR), pp. 353–364.

[47] Grotov, K., Titov, S., Zharov, Y., Bryksin, T., 2024b. Untangling
Knots: Leveraging LLM for Error Resolution in Computational Note-
books. arXiv preprint arXiv:2405.01559 .

[48] Grüning, B.A., Rasche, E., Rebolledo-Jaramillo, B., Eberhard, C.,
Houwaart, T., Chilton, J., Coraor, N., Backofen, R., Taylor, J.,
Nekrutenko, A., 2017. Jupyter and Galaxy: Easing Entry Barriers

63

http://dx.doi.org/10.1145/3643991.3644882
http://dx.doi.org/10.1145/3643991.3644882
http://dx.doi.org/10.1145/3644815.3644979
http://dx.doi.org/10.1109/seaa64295.2024.00025


into Complex Data Analyses for Biomedical Researchers. PLoS com-
putational biology 13, e1005425.

[49] Guo, D., Lu, S., Duan, N., Wang, Y., Zhou, M., Yin, J., 2022. UniX-
coder: Unified cross-modal pre-training for code representation, in:
Muresan, S., Nakov, P., Villavicencio, A. (Eds.), Proceedings of the
60th Annual Meeting of the Association for Computational Linguistics
(ACL ’22), Association for Computational Linguistics, Dublin, Ireland.
pp. 7212–7225. doi:10.18653/v1/2022.acl-long.499.

[50] Guo, G., Arendt, D., Endert, A., 2024. Explainability in JupyterLab
and Beyond: Interactive XAI Systems for Integrated and Collaborative
Workflows. arXiv preprint arXiv:2404.02081 .

[51] Haedrich, C., Petras, V., Petrasova, A., Blumentrath, S., Mitasova,
H., 2023. Integrating GRASS GIS and Jupyter Notebooks to Facilitate
Advanced Geospatial Modeling Education. Transactions in GIS 27,
686–702.

[52] Hamrick, J.B., 2016. Creating and Grading IPython/Jupyter Note-
book Assignments with NbGrader, in: Proceedings of the 47th ACM
Technical Symposium on Computing Science Education, pp. 242–242.

[53] Hao, B., Sun, W., Yu, Y., Xie, G., 2017. Developing Healthcare Data
Analytics APPs with Open Data Science Tools, in: Informatics for
Health: Connected Citizen-Led Wellness and Population Health. IOS
Press, pp. 176–180.

[54] Harrison, G., Bryson, K., Bamba, A.E.B., Dovichi, L., Binion, A.H.,
Borem, A., Ur, B., 2024. JupyterLab in Retrograde: Contextual Notifi-
cations That Highlight Fairness and Bias Issues for Data Scientists, in:
Proceedings of the CHI Conference on Human Factors in Computing
Systems, ACM. pp. 1–19. doi:10.1145/3613904.3642755.

[55] Head, A., Hohman, F., Barik, T., Drucker, S.M., DeLine, R., 2019.
Managing Messes in Computational Notebooks, in: CHI Conference
on Human Factors in Computing Systems, ACM. pp. 1–12.

[56] Horiuchi, M., Sasaki, Y., Xiao, C., Onizuka, M., 2022a. JupySim:
Jupyter Notebook Similarity Search System, in: 25th International
Conference on Extending Database Technology (EDBT), pp. 554–557.

64

http://dx.doi.org/10.18653/v1/2022.acl-long.499
http://dx.doi.org/10.1145/3613904.3642755


[57] Horiuchi, M., Sasaki, Y., Xiao, C., Onizuka, M., 2022b. Similarity
Search on Computational Notebooks. arXiv preprint arXiv:2201.12786
.

[58] Huang, J., Guo, D., Wang, C., Gu, J., Lu, S., Inala, J.P., Yan, C., Gao,
J., Duan, N., Lyu, M.R., 2024a. Contextualized Data-Wrangling Code
Generation in Computational Notebooks, in: Proceedings of the 39th
IEEE/ACM International Conference on Automated Software Engi-
neering, ACM. pp. 1282–1294. doi:10.1145/3691620.3695503.

[59] Huang, Y., Luo, J., Yu, Y., Zhang, Y., Lei, F., Wei, Y., He, S., Huang,
L., Liu, X., Zhao, J., et al., 2024b. DA-Code: Agent Data Science Code
Generation Benchmark for Large Language Models. arXiv preprint
arXiv:2410.07331 .

[60] In, S., Krokos, E., Whitley, K., North, C., Yang, Y., 2024. Evaluating
Navigation and Comparison Performance of Computational Notebooks
on Desktop and in Virtual Reality, in: Proceedings of the CHI Con-
ference on Human Factors in Computing Systems, ACM. pp. 1–15.
doi:10.1145/3613904.3642932.

[61] Jiang, Y., Kästner, C., Zhou, S., 2022. Elevating Jupyter Notebook
Maintenance Tooling by Identifying and Extracting Notebook Struc-
tures, in: International Conference on Software Maintenance and Evo-
lution (ICSME), IEEE. pp. 399–403.

[62] Juneau, S., Olsen, K., Nikutta, R., Jacques, A., Bailey, S., 2021.
Jupyter-Enabled Astrophysical Analysis Using Data-Proximate Com-
puting Platforms. Computing in Science & Engineering 23, 15–25.

[63] Källén, M., Sigvardsson, U., Wrigstad, T., 2021. Jupyter Notebooks
on GitHub: Characteristics and Code Clones. The Art, Science, and
Engineering of Programming 5.

[64] Kang, D., Ho, T., Marquardt, N., Mutlu, B., Bianchi, A., 2021. Toon-
note: Improving Communication in Computational Notebooks using
Interactive Data Comics, in: CHI Conference on Human Factors in
Computing Systems, ACM. pp. 1–14.

65

http://dx.doi.org/10.1145/3691620.3695503
http://dx.doi.org/10.1145/3613904.3642932


[65] Kastner, M., Franzkeit, J., Lainé, A., 2020. Teaching Machine Learn-
ing and Data Literacy to Students of Logistics using Jupyter Note-
books, in: DELFI 2020 – Die 18. Fachtagung Bildungstechnologien
der Gesellschaft für Informatik e.V.. Gesellschaft für Informatik e.V.,
Bonn, pp. 365–366.

[66] Kery, M.B., Myers, B.A., 2018. Interactions for Untangling Messy
History in a Computational Notebook, in: 2018 IEEE symposium on
visual languages and human-centric computing (VL/HCC), IEEE. pp.
147–155.

[67] Kery, M.B., Radensky, M., Arya, M., John, B.E., Myers, B.A., 2018.
The story in the Notebook: Exploratory Data Science using a Literate
Programming Tool, in: Proceedings of the CHI Conference on Human
Factors in Computing Systems, pp. 1–11.

[68] Kerzel, D., König-Ries, B., Sheeba, S., 2023. MLProvLab: Provenance
Management for Data Science Notebooks, in: BTW 2023. Gesellschaft
für Informatik e.V., Bonn, pp. 965–980.

[69] Kerzel, D., Samuel, S., König-Ries, B., 2021. Towards Tracking Prove-
nance from Machine Learning Notebooks, in: KDIR, pp. 274–281.

[70] Kinanen, O., Muñoz-Moller, A.D., Stirbu, V., Mikkonen, T., 2024. Im-
proving Quantum Developer Experience with Kubernetes and Jupyter
Notebooks, in: 2024 IEEE International Conference on Quantum Com-
puting and Engineering (QCE), IEEE. pp. 245–250. doi:10.1109/
qce60285.2024.10286.

[71] Kitchenham, B., 2004. Procedures for Performing Systematic Reviews.
Keele, UK, Keele University 33, 1–26.

[72] Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B.E., Bussonnier,
M., Frederic, J., Kelley, K., Hamrick, J.B., Grout, J., Corlay, S., et al.,
2016. Jupyter Notebooks-a Publishing Format for Reproducible Com-
putational Workflows. Elpub 2016, 87–90.

[73] Koenzen, A.P., Ernst, N.A., Storey, M.A.D., 2020. Code Duplication
and Reuse in Jupyter Notebooks, in: Symposium on Visual Languages
and Human-Centric Computing (VL/HCC), IEEE. pp. 1–9.

66

http://dx.doi.org/10.1109/qce60285.2024.10286
http://dx.doi.org/10.1109/qce60285.2024.10286


[74] Koop, D., 2021. Notebook Archaeology: Inferring Provenance from
Computational Notebooks, in: Provenance and Annotation of Data
and Processes: 8th and 9th International Provenance and Annotation
Workshop, IPAW 2020+ IPAW 2021, Springer. pp. 109–126.

[75] Koop, D., Patel, J., 2017. Dataflow Notebooks: Encoding and Tracking
Dependencies of Cells, in: 9th USENIX Workshop on the Theory and
Practice of Provenance (TaPP).

[76] Kuramitsu, K., Obara, Y., Sato, M., Obara, M., 2023. KOGI: A Seam-
less Integration of ChatGPT into Jupyter Environments for Program-
ming Education, in: Proceedings of the 2023 ACM SIGPLAN Interna-
tional Symposium on SPLASH-E, Association for Computing Machin-
ery, New York, NY, USA. pp. 50–59. doi:10.1145/3622780.3623648.

[77] Kwon, N., Kim, H., Rahman, S., Zhang, D., Hruschka, E., 2023. Wee-
dle: Composable Dashboard for Data-Centric NLP in Computational
Notebooks, in: Companion Proceedings of the ACM Web Conference
2023, pp. 132–135.

[78] Lau, S., Drosos, I., Markel, J.M., Guo, P.J., 2020. The Design Space
of Computational Notebooks: An Analysis of 60 Systems in Academia
and Industry, in: Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), IEEE. pp. 1–11.

[79] Launet, L., Wang, Y., Colomer, A., Igual, J., Pulgaŕın-Ospina, C.,
Koulouzis, S., Bianchi, R., Mosquera-Zamudio, A., Monteagudo, C.,
Naranjo, V., et al., 2023. Federating Medical Deep Learning Models
from Private Jupyter Notebooks to Distributed Institutions. Applied
Sciences 13, 919.

[80] Ley, M., 2002. The DBLP Computer Science Bibliography: Evolution,
Research Issues, Perspectives, in: International symposium on string
processing and information retrieval, Springer. pp. 1–10.

[81] Li, H., Ying, L., Zhang, H., Wu, Y., Qu, H., Wang, Y., 2023a. No-
table: On-the-fly Assistant for Data Storytelling in Computational
Notebooks, in: Proceedings of the 2023 CHI Conference on Human
Factors in Computing Systems, pp. 1–16.

67

http://dx.doi.org/10.1145/3622780.3623648


[82] Li, L., Bissyandé, T.F., Papadakis, M., Rasthofer, S., Bartel, A.,
Octeau, D., Klein, J., Traon, L., 2017. Static Analysis of Android Apps:
A Systematic Literature Review. Information and Software Technology
88, 67–95.

[83] Li, L., Lv, J., 2024. Unlocking Insights: Semantic Search in Jupyter
Notebooks. arXiv preprint arXiv:2402.13234 .

[84] Li, X., Wang, Y., Wang, H., Wang, Y., Zhao, J., 2021. Nbsearch:
Semantic Search and Visual Exploration of Computational Notebooks,
in: CHI Conference on Human Factors in Computing Systems, ACM.
pp. 1–14.

[85] Li, X., Zhang, Y., Leung, J., Sun, C., Zhao, J., 2023b. EDAssistant:
Supporting Exploratory Data Analysis in Computational Notebooks
with In Situ Code Search and Recommendation. ACM Transactions
on Interactive Intelligent Systems 13, 1–27.

[86] Li, Z., Chockchowwat, S., Fang, H., Sahu, R., Thakurdesai, S., Pri-
daphatrakun, K., Park, Y., 2024a. Demonstration of ElasticNotebook:
Migrating Live Computational Notebook States, in: Companion of the
2024 International Conference on Management of Data, ACM. pp. 540–
543. doi:10.1145/3626246.3654752.

[87] Li, Z., Chockchowwat, S., Sahu, R., Sheth, A., Park, Y., 2024b.
Kishu: Time-Traveling for Computational Notebooks. arXiv preprint
arXiv:2406.13856 doi:https://doi.org/10.14778/3717755.3717759.

[88] Li, Z., Gor, P., Prabhu, R., Yu, H., Mao, Y., Park, Y., 2023c. Elas-
ticNotebook: Enabling Live Migration for Computational Notebooks.
Proc. VLDB Endow. 17, 119–133.

[89] Lin, Y., Li, H., Yang, L., Wu, A., Qu, H., 2023. InkSight: Leveraging
Sketch Interaction for Documenting Chart Findings in Computational
Notebooks. IEEE Transactions on Visualization and Computer Graph-
ics , 1–11doi:10.1109/tvcg.2023.3327170.

[90] Liu, E.S., Lukes, D.A., Griswold, W.G., 2023. Refactoring in Compu-
tational Notebooks. ACM Transactions on Software Engineering and
Methodology 32, 1–24.

68

http://dx.doi.org/10.1145/3626246.3654752
http://dx.doi.org/https://doi.org/10.14778/3717755.3717759
http://dx.doi.org/10.1109/tvcg.2023.3327170


[91] Liu, X., Wang, D., Wang, A., Hou, Y., Wu, L., 2021. HAConvGNN:
Hierarchical Attention Based Convolutional Graph Neural Network for
Code Documentation Generation in Jupyter Notebooks, in: Conference
on Empirical Methods in Natural Language Processing, Association for
Computational Linguistics. pp. 4473–4485.

[92] Lu, H.m., Kwong, A., Unpingco, J., 2020. Securing Your Collaborative
Jupyter Notebooks in the Cloud using Container and Load Balancing
Services, in: SciPy, pp. 2–10.

[93] Macke, S., 2021. Automating State Management in Computational
Notebooks, in: 11th Annual Conference on Innovative Data Systems
Research (CIDR).

[94] Malone, M., Wang, Y., Monrose, F., 2023. Securely Autograding Cy-
bersecurity Exercises Using Web Accessible Jupyter Notebooks, in:
Proceedings of the 54th ACM Technical Symposium on Computer Sci-
ence Education V. 1, pp. 165–171.

[95] Manzoor, H., Naik, A., Shaffer, C.A., North, C., Edwards, S.H., 2020.
Auto-grading jupyter notebooks, in: Proceedings of the 51st ACM
Technical Symposium on Computer Science Education, pp. 1139–1144.

[96] McHugh, M.L., 2012. Interrater Reliability: the Kappa Statistic. Bio-
chemia medica 22, 276–282.

[97] McNutt, A.M., Wang, C., Deline, R.A., Drucker, S.M., 2023. On the
Design of AI-powered Code Assistants for Notebooks, in: Proceedings
of the 2023 CHI Conference on Human Factors in Computing Systems,
pp. 1–16.

[98] Mendez, D., Graziotin, D., Wagner, S., Seibold, H., 2020. Open Science
in Software Engineering. Springer International Publishing. pp. 477–
501.

[99] Michael, I., 2022. Keeping your Jupyter Notebook Code Quality Bar
High and Production Ready with Ploomber, in: SciPy, pp. 121–124.

[100] Mondal, T., Barnett, S., Lal, A., Vedurada, J., 2023. Cell2Doc: ML
Pipeline for Generating Documentation in Computational Notebooks,

69



in: 2023 38th IEEE/ACM International Conference on Automated
Software Engineering (ASE), IEEE. pp. 384–396.

[101] Muller, M.J., Wang, A.Y., Ross, S.I., Weisz, J.D., Agarwal, M., Ta-
lamadupula, K., Houde, S., Martinez, F., Richards, J.T., Drozdal, J.,
et al., 2021. How Data Scientists Improve Generated Code Documen-
tation in Jupyter Notebooks, in: 26th Conference on Intelligent User
Interfaces (ACM IUI), ACM.

[102] Murta, L., Braganholo, V., Chirigati, F., Koop, D., Freire, J., 2015.
noWorkflow: Capturing and Analyzing Provenance of Scripts, in:
Provenance and Annotation of Data and Processes: 5th International
Provenance and Annotation Workshop, (IPAW), Springer. pp. 71–83.

[103] Negrini, L., Shabadi, G., Urban, C., 2023. Static Analysis of Data
Transformations in Jupyter Notebooks, in: Proceedings of the 12th
ACM SIGPLAN International Workshop on the State Of the Art in
Program Analysis, pp. 8–13.

[104] Niephaus, F., Krebs, E., Flach, C., Lincke, J., Hirschfeld, R., 2019.
PolyJuS: a Squeak/Smalltalk-based Polyglot Notebook System for the
GraalVM, in: Companion Proceedings of the 3rd International Confer-
ence on the Art, Science, and Engineering of Programming, pp. 1–6.

[105] Oli, P., Banjade, R., Tamang, L.J., Rus, V., 2021. Automated Assess-
ment of Quality of Jupyter Notebooks Using Artificial Intelligence and
Big Code, in: The International FLAIRS Conference Proceedings.

[106] Ono, J.P., Freire, J., Silva, C.T., 2021. Interactive Data Visualization
in Jupyter Notebooks. Computing in Science & Engineering 23, 99–106.

[107] Ouyang, Y., Shen, L., Wang, Y., Li, Q., 2024. NotePlayer: Engaging
Computational Notebooks for Dynamic Presentation of Analytical Pro-
cesses, in: Proceedings of the 37th Annual ACM Symposium on User
Interface Software and Technology, Association for Computing Machin-
ery, New York, NY, USA. pp. 1–20. doi:10.1145/3654777.3676410.

[108] Owusu, C., Snigdha, N.J., Martin, M.T., Kalyanapu, A.J., 2022.
PyGEE-SWToolbox: A Python Jupyter Notebook Toolbox for Interac-
tive Surface Water Mapping and Analysis Using Google Earth Engine.
Sustainability 14, 2557.

70

http://dx.doi.org/10.1145/3654777.3676410


[109] Patra, J., Pradel, M., 2022. Nalin: Learning from Runtime Behavior
to Find Name-Value Inconsistencies in Jupyter Notebooks, in: Pro-
ceedings of the ACM/IEEE 44th International Conference on Software
Engineering, pp. 1469–1481.

[110] Peñuela, A., Hutton, C., Pianosi, F., 2021. An open-source pack-
age with interactive Jupyter Notebooks to enhance the accessibility
of reservoir operations simulation and optimisation. Environmental
Modelling & Software 145, 105188.

[111] Perez, M., Aydin, S., Lichter, H., 2024. A Flexible Cell Clas-
sification for ML Projects in Jupyter Notebooks. arXiv preprint
arXiv:2403.07562 .

[112] Perkel, J.M., 2018. Why Jupyter is Data Scientists’ Computational
Notebook of Choice. Nature 563, 145–147.

[113] Petersohn, M., Schöbel, K., et al., 2023. Kopplung von Jupyter Note-
books mit externen E-Assessment-Systemen am Beispiel des Data Man-
agement Testers. Lecture Notes in Informatics 21, 1–6.

[114] Petricek, T., Geddes, J., Sutton, C., 2018. Wrattler: Reproducible,
Live and Polyglot Notebooks, in: 10th USENIX workshop on the the-
ory and practice of provenance (TaPP).

[115] Pimentel, J.F., Murta, L., Braganholo, V., Freire, J., 2019. A Large-
Scale Study About Quality and Reproducibility of Jupyter Note-
books, in: 16th international conference on mining software repositories
(MSR), IEEE. pp. 507–517.

[116] Pimentel, J.F., Murta, L., Braganholo, V., Freire, J., 2021. Under-
standing and Improving the Quality and Reproducibility of Jupyter
Notebooks. Empirical Software Engineering 26, 65.

[117] Pimentel, J.F.N., Braganholo, V., Murta, L., Freire, J., 2015. Col-
lecting and Analyzing Provenance on Interactive Notebooks: When
{IPython} Meets {noWorkflow}, in: 7th USENIX workshop on the
theory and practice of provenance (TaPP 15).

[118] Psallidas, F., Zhu, Y., Karlas, B., Henkel, J., Interlandi, M., Krishnan,
S., Kroth, B., Emani, V., Wu, W., Zhang, C., et al., 2022. Data Science

71



Through the Looking Glass: Analysis of Millions of GitHub Notebooks
and ML. NET Pipelines. ACM SIGMOD Record 51, 30–37.

[119] Quaranta, L., 2022. Assessing the Quality of Computational Notebooks
for a Frictionless Transition from Exploration to Production, in: Pro-
ceedings of the ACM/IEEE 44th International Conference on Software
Engineering: Companion Proceedings, pp. 256–260.

[120] Quaranta, L., Calefato, F., Lanubile, F., 2021. KGTorrent: A Dataset
of Python Jupyter Notebooks from Kaggle, in: 2021 IEEE/ACM
18th International Conference on Mining Software Repositories (MSR),
IEEE. pp. 550–554.

[121] Quaranta, L., Calefato, F., Lanubile, F., 2022a. Eliciting Best Practices
for Collaboration with Computational Notebooks. Proceedings of the
ACM on Human-Computer Interaction 6, 1–41.

[122] Quaranta, L., Calefato, F., Lanubile, F., 2022b. Pynblint: a Static
Analyzer for Python Jupyter Notebooks, in: Proceedings of the 1st
International Conference on AI Engineering: Software Engineering for
AI, pp. 48–49.

[123] Quaranta, L., Calefato, F., Lanubile, F., 2024. Pynblint: A quality
assurance tool to improve the quality of Python Jupyter notebooks.
SoftwareX 28, 101959. doi:10.1016/j.softx.2024.101959.

[124] Raghunandan, D., Elmqvist, N., Battle, L., 2023a. Measuring How
Data Science Notebooks Evolve Over Time. Interactions 30, 17–18.

[125] Raghunandan, D., Roy, A., Shi, S., Elmqvist, N., Battle, L., 2023b.
Code code evolution: Understanding how people change data science
notebooks over time, in: Proceedings of the 2023 CHI Conference on
Human Factors in Computing Systems, pp. 1–12.

[126] Ragkhitwetsagul, C., Prasertpol, V., Ritta, N., Sae-Wong, P., Noraset,
T., Choetkiertikul, M., 2024. Typhon: Automatic Recommendation of
Relevant Code Cells in Jupyter Notebooks, in: 2024 21st International
Joint Conference on Computer Science and Software Engineering (JC-
SSE), IEEE. pp. 662–669. doi:10.1109/jcsse61278.2024.10613645.

72

http://dx.doi.org/10.1016/j.softx.2024.101959
http://dx.doi.org/10.1109/jcsse61278.2024.10613645


[127] Ramasamy, D., Sarasua, C., Bacchelli, A., Bernstein, A., 2023. Vi-
sualising Data Science Workflows to Support Third-party Notebook
Comprehension: An Empirical Study. Empirical Software Engineering
28, 58.

[128] Ramsingh, A., Verma, P., 2024. Understanding & Mitigating the Chal-
lenges of Securing Jupyter Notebooks Online, in: 2024 IEEE Interna-
tional Conference on Cyber Security and Resilience (CSR), IEEE. pp.
01–07. doi:10.1109/csr61664.2024.10679378.

[129] Reades, J., 2020. Teaching on Jupyter. Region 7, 21–34.

[130] Rehman, M.S., 2019. Towards Understanding Data Analysis Work-
flows using a Large Notebook Corpus, in: International Conference on
Management of Data, ACM. pp. 1841–1843.

[131] Ritta, N., Settewong, T., Kula, R.G., Ragkhitwetsagul, C., Sunetnanta,
T., Matsumoto, K., 2022. Reusing My Own Code: Preliminary Results
for Competitive Coding in Jupyter Notebooks, in: 29th Asia-Pacific
Software Engineering Conference (APSEC), IEEE. pp. 457–461.

[132] Robinson, D., Ernst, N.A., Vargas, E.L., Storey, M.A.D., 2022. Er-
ror Identification Strategies for Python Jupyter Notebooks, in: Pro-
ceedings of the 30th IEEE/ACM International Conference on Program
Comprehension, pp. 253–263.

[133] Rule, A., Birmingham, A., Zuniga, C., Altintas, I., Huang, S.C.,
Knight, R., Moshiri, N., Nguyen, M.H., Rosenthal, S.B., Pérez, F.,
et al., 2018a. Ten Simple Rules for Reproducible Research in Jupyter
Notebooks. PLoS Computational Biology 15.

[134] Rule, A., Drosos, I., Tabard, A., Hollan, J.D., 2018b. Aiding Collabora-
tive Reuse of Computational Notebooks with Annotated Cell Folding.
Proceedings of the ACM on Human-Computer Interaction 2, 1–12.

[135] Rule, A., Tabard, A., Hollan, J.D., 2018c. Exploration and Explanation
in Computational Notebooks, in: CHI Conference on Human Factors
in Computing Systems, ACM. pp. 1–12.

[136] Rule, A.C., 2018. Design and Use of Computational Notebooks. Uni-
versity of California, San Diego.

73

http://dx.doi.org/10.1109/csr61664.2024.10679378


[137] Samuel, S., König-Ries, B., 2018. ProvBook: Provenance-based Se-
mantic Enrichment of Interactive Notebooks for Reproducibility, in:
ISWC (P&D/Industry/BlueSky).

[138] Samuel, S., König-Ries, B., 2021. Reproducemegit: A Visualization
Tool for Analyzing Reproducibility of Jupyter Notebooks, in: 9th In-
ternational Provenance and Annotation Workshop (IPAW), Springer.
pp. 201–206.

[139] Samuel, S., Mietchen, D., 2023. Computational Reproducibility of
Jupyter Notebooks from Biomedical Publications. GigaScience 13,
giad113.

[140] Sato, F., Ikegami, A., Ishio, T., Shimari, K., Matsumoto, K., 2022.
Comparing Execution Traces of Jupyter Notebook for Checking Cor-
rectness of Refactoring, in: 16th International Workshop on Software
Clones (IWSC), IEEE. pp. 62–68.

[141] Sato, S., Nakamaru, T., 2024. Multiverse Notebook: Shifting Data
Scientists to Time Travelers. Proceedings of the ACM on Programming
Languages 8, 754–783. doi:10.1145/3649838.

[142] Savira, P., Marrinan, T., Papka, M.E., 2021. Writing, Running, and
Analyzing Large-scale Scientific Simulations with Jupyter Notebooks,
in: 2021 IEEE 11th Symposium on Large Data Analysis and Visual-
ization (LDAV), IEEE. pp. 90–91.

[143] Schröder, M., Krüger, F., Spors, S., 2019. Reproducible Research
is more than Publishing Research Artefacts: A Systematic Analy-
sis of Jupyter Notebooks from Research Articles. arXiv preprint
arXiv:1905.00092 .

[144] Scully-Allison, C., Lumsden, I., Williams, K., Bartels, J., Taufer, M.,
Brink, S., Bhatele, A., Pearce, O., Isaacs, K.E., 2024. Design Concerns
for Integrated Scripting and Interactive Visualization in Notebook En-
vironments. IEEE Transactions on Visualization and Computer Graph-
ics 30, 6572–6585. doi:10.1109/tvcg.2024.3354561.

[145] Settewong, T., Ritta, N., Kula, R.G., Ragkhitwetsagul, C., Sunetnanta,
T., Matsumoto, K., 2022. Why Visualize Data When Coding? Prelimi-

74

http://dx.doi.org/10.1145/3649838
http://dx.doi.org/10.1109/tvcg.2024.3354561


nary Categories for Coding in Jupyter Notebooks, in: 29th Asia-Pacific
Software Engineering Conference (APSEC), IEEE. pp. 462–466.

[146] Shankar, S., Macke, S., Chasins, S., Head, A., Parameswaran, A., 2022.
Bolt-on, Compact, and Rapid Program Slicing for Notebooks. VLDB
Endowment 15, 4038–4047.

[147] Shome, A., Cruz, L., Spinellis, D., van Deursen, A., 2024. Understand-
ing Feedback Mechanisms in Machine Learning Jupyter Notebooks.
arXiv preprint arXiv:2408.00153 .

[148] Showkat, D., Baumer, E.P., 2021. Where Do Stories Come From?
Examining the Exploration Process in Investigative Data Journalism.
Proceedings of the ACM on Human-Computer Interaction 5, 1–31.

[149] Siddik, M.S., Bezemer, C.P., 2023. Do Code Quality and Style Issues
Differ Across (Non-) Machine Learning Notebooks? Yes!, in: 2023
IEEE 23rd International Working Conference on Source Code Analysis
and Manipulation (SCAM), IEEE. pp. 72–83.

[150] Simmons, A.J., Barnett, S., Rivera-Villicana, J., Bajaj, A., Vasa, R.,
2020. A Large-scale Comparative Analysis of Coding Standard Con-
formance in Open-source Data Science Projects, in: Proceedings of
the 14th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM), pp. 1–11.

[151] Singer, J., 2020. Notes on Notebooks: Is Jupyter the Bringer of Jol-
lity?, in: ACM SIGPLAN International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software, pp.
180–186.

[152] Speicher, D., Dong, T., Cremers, O., Bauckhage, C., Cremers, A.B.,
2019. Notes on the Code Quality Culture on Jupyter (Notebooks), in:
Softwaretechnik-Trends Band 39, Heft 2, Gesellschaft für Informatik
eV. pp. 17–18.

[153] Stark, J.A., Diakopoulos, N., 2016. Towards Editorial Transparency
in Computational Journalism, in: Computation+ Journalism Sympo-
sium.

75



[154] Studtmann, L., Aydin, S., Lichter, H., 2023. Histree: A Tree-Based
Experiment History Tracking Tool for Jupyter Notebooks, in: 2023
30th Asia-Pacific Software Engineering Conference (APSEC), pp. 299–
308. doi:10.1109/APSEC60848.2023.00040.

[155] Subotić, P., Milikić, L., Stojić, M., 2022. A Static Analysis Framework
for Data Science Notebooks, in: 2022 IEEE/ACM 44th International
Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP), IEEE. pp. 13–22.

[156] Subramanian, K., Hamdan, N., Borchers, J., 2020. Casual Notebooks
and Rigid Scripts: Understanding Data Science Programming, in: 2020
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), IEEE. pp. 1–5.

[157] Tan, C.R., 2021. The Nascent Case for Adopting Jupyter Notebooks
as a Pedagogical Tool for Interdisciplinary Humanities, Social Science,
and Arts Education. Computing in Science & Engineering 23, 107–113.

[158] Terlych, N.A., Rodriges Zalipynis, R.A., 2021. Jupyter Lab Based
System for Geospatial Environmental Data Processing, in: Proceedings
of the Future Technologies Conference (FTC) 2020, Volume 2, Springer.
pp. 627–638.

[159] Titov, S., Golubev, Y., Bryksin, T., 2022. ReSplit: Improving the
Structure of Jupyter Notebooks by Re-Splitting Their Cells, in: Inter-
national Conference on Software Analysis, Evolution and Reengineer-
ing (SANER), IEEE. pp. 492–496.

[160] Titov, S., Grotov, K., Prasad S. Venkatesh, A., 2024. Hidden Gems in
the Rough: Computational Notebooks as an Uncharted Oasis for IDEs,
in: Proceedings of the 1st ACM/IEEE Workshop on Integrated De-
velopment Environments, Association for Computing Machinery, New
York, NY, USA. pp. 107–109. doi:10.1145/3643796.3648465.

[161] Tran O’Leary, J., Benabdallah, G., Peek, N., 2023. Imprimer: Compu-
tational Notebooks for CNC Milling, in: Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems, pp. 1–15.

[162] Valentine, D., Zaslavsky, I., Richard, S., Meier, O., Hudman, G.,
Peucker-Ehrenbrink, B., Stocks, K., 2021. EarthCube Data Discovery

76

http://dx.doi.org/10.1109/APSEC60848.2023.00040
http://dx.doi.org/10.1145/3643796.3648465


Studio: A Gateway into Geoscience Data Discovery and Exploration
with Jupyter Notebooks. Concurrency and computation: practice and
experience 33, e6086.

[163] Van Dusen, E., 2020. Jupyter for Teaching Data Science, in: Pro-
ceedings of the 51st ACM Technical Symposium on Computer Science
Education, pp. 1399–1399.

[164] Vandewalle, R., Kang, J.Y., Yin, D., Wang, S., 2019. Integrat-
ing CyberGIS-Jupyter and Spatial Agent-based Modelling to Evalu-
ate Emergency Evacuation Time, in: proceedings of the 2nd ACM
SIGSPATIAL international workshop on GeoSpatial simulation, pp.
28–31.

[165] Venkatesh, A.P.S., Bodden, E., 2021. Automated Cell Header Gen-
erator for Jupyter Notebooks, in: Proceedings of the 1st ACM Inter-
national Workshop on AI and Software Testing/Analysis, ACM. pp.
17–20.

[166] Venkatesh, A.P.S., Sabu, S., Chekkapalli, M., Wang, J., Li, L., Bod-
den, E., 2024. Static analysis driven enhancements for comprehension
in machine learning notebooks. Empirical Software Engineering 29.
doi:10.1007/s10664-024-10525-w.

[167] Venkatesh, A.P.S., Wang, J., Li, L., Bodden, E., 2023. Enhancing Com-
prehension and Navigation in Jupyter Notebooks with Static Analysis,
in: 2023 IEEE International Conference on Software Analysis, Evolu-
tion and Reengineering (SANER), IEEE. pp. 391–401.

[168] Verano Merino, M., Sáenz, J.P., Dı́az Castillo, A.M., 2022. Suppose
You Had Blocks within a Notebook, in: Proceedings of the 1st ACM
SIGPLAN International Workshop on Programming Abstractions and
Interactive Notations, Tools, and Environments, pp. 57–62.

[169] Wang, A., Wang, D., Liu, X., Wu, L., 2021a. Graph-Augmented Code
Summarization in Computational Notebooks, in: 13th International
Joint Conference on Artificial Intelligence, IJCAI, pp. 5020–5023.

[170] Wang, A., Wu, Z., Brooks, C., Oney, S., 2024a. Don’t step on my
toes: resolving editing conflicts in real-time collaboration in computa-

77

http://dx.doi.org/10.1007/s10664-024-10525-w


tional notebooks, in: Proceedings of the 1st ACM/IEEE Workshop on
Integrated Development Environments, pp. 47–52.

[171] Wang, A.Y., Mittal, A., Brooks, C., Oney, S., 2019. How Data Scien-
tists Use Computational Notebooks for Real-Time Collaboration. Pro-
ceedings of the ACM on Human-Computer Interaction 3, 1–30.

[172] Wang, A.Y., Wang, D., Drozdal, J., Liu, X., Park, S., Oney, S., Brooks,
C., 2021b. What makes a well-documented notebook? a case study of
data scientists’ documentation practices in kaggle, in: CHI Conference
on Human Factors in Computing Systems, pp. 1–7.

[173] Wang, A.Y., Wang, D., Drozdal, J., Muller, M., Park, S., Weisz,
J.D., Liu, X., Wu, L., Dugan, C., 2021c. Themisto: Towards Auto-
mated Documentation Generation in Computational Notebooks. arXiv
preprint arXiv:2102.12592 .

[174] Wang, A.Y., Wang, D., Drozdal, J., Muller, M., Park, S., Weisz, J.D.,
Liu, X., Wu, L., Dugan, C., 2022a. Documentation Matters: Human-
centered AI System to Assist Data Science Code Documentation in
Computational Notebooks. ACM Transactions on Computer-Human
Interaction 29, 1–33.

[175] Wang, F., Lin, Y., Yang, L., Li, H., Gu, M., Zhu, M., Qu, H., 2024b.
OutlineSpark: Igniting AI-powered Presentation Slides Creation from
Computational Notebooks through Outlines, in: Proceedings of the
CHI Conference on Human Factors in Computing Systems, ACM. pp.
1–16. doi:10.1145/3613904.3642865.

[176] Wang, F., Liu, X., Liu, O., Neshati, A., Ma, T., Zhu, M., Zhao, J.,
2023. Slide4N: Creating Presentation Slides from Computational Note-
books with Human-AI Collaboration, in: Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems, pp. 1–18.

[177] Wang, J., Kuo, T.y., Li, L., Zeller, A., 2020a. Assessing and Restor-
ing Reproducibility of Jupyter Notebooks, in: 35th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE), pp.
138–149.

[178] Wang, J., Kuo, T.y., Li, L., Zeller, A., 2020b. Restoring Reproducibil-
ity of Jupyter Notebooks, in: Proceedings of the ACM/IEEE 42nd

78

http://dx.doi.org/10.1145/3613904.3642865


International Conference on Software Engineering (ICSE): Companion
proceedings, pp. 288–289.

[179] Wang, J., Li, L., Zeller, A., 2020c. Better Code, Better Sharing:On
the Need of Analyzing Jupyter Notebooks, in: ACM/IEEE 42nd inter-
national conference on software engineering: new ideas and emerging
results, pp. 53–56.

[180] Wang, J., Li, L., Zeller, A., 2021d. Restoring Execution Environments
of Jupyter Notebooks, in: 43rd International Conference on Software
Engineering (ICSE), IEEE. pp. 1622–1633.

[181] Wang, Y., López, J.A.H., Nilsson, U., Varro, D., 2024c. Using Run-
Time Information to Enhance Static Analysis of Machine Learning
Code in Notebooks, in: Companion Proceedings of the 32nd ACM
International Conference on the Foundations of Software Engineering,
pp. 497–501.

[182] Wang, Y., Meijer, W., López, J.A.H., Nilsson, U., Varró, D., 2024d.
Why do Machine Learning Notebooks Crash? arXiv preprint
arXiv:2411.16795 .

[183] Wang, Z.J., Dai, K., Edwards, W.K., 2022b. Stickyland: Breaking the
Linear Presentation of Computational Notebooks, in: CHI Conference
on Human Factors in Computing Systems, pp. 1–7.

[184] Wang, Z.J., Munechika, D., Lee, S., Chau, D.H., 2024e. SuperNOVA:
Design Strategies and Opportunities for Interactive Visualization in
Computational Notebooks, in: Extended Abstracts of the CHI Confer-
ence on Human Factors in Computing Systems, pp. 1–17.

[185] Wannipurage, D., Marru, S., Pierce, M., 2022. A Framework to Cap-
ture and Reproduce the Absolute State of Jupyter Notebooks, in: Prac-
tice and Experience in Advanced Research Computing. ACM, pp. 1–8.

[186] Watson, A., Bateman, S., Ray, S., 2019. PySnippet: Accelerating Ex-
ploratory Data Analysis in Jupyter Notebook through Facilitated Ac-
cess to Example Code, in: 22nd International Conference on Extending
Database Technology (EDBT)/ICDT Workshops.

79



[187] Weber, T., Ehe, J., Mayer, S., 2024. Extending Jupyter with Multi-
Paradigm Editors. Proceedings of the ACM on Human-Computer In-
teraction 8, 1–22. doi:10.1145/3660247.

[188] Weber, T., Mayer, S., 2024. From Computational to Conversational
Notebooks, in: Proceedings of the 1st CHI Workshop on Human-
Notebook Interactions, pp. 1–6.

[189] Weinman, N., Drucker, S.M., Barik, T., DeLine, R., 2021. Fork it:
Supporting Stateful Alternatives in Computational Notebooks, in: Pro-
ceedings of the 2021 CHI Conference on Human Factors in Computing
Systems, pp. 1–12.

[190] Werner, E., Manjunath, L., Frenzel, J., Torge, S., 2021. Bridging be-
tween Data Science and Performance Analysis: Tracing of Jupyter
Notebooks, in: Proceedings of the First International Conference on
AI-ML Systems, pp. 1–7.

[191] Werner, E., Rygin, A., Gocht-Zech, A., Döbel, S., Lieber, M., 2024.
JUmPER: Performance Data Monitoring, Instrumentation and Visu-
alization for Jupyter Notebooks, in: SC24-W: Workshops of the In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis, IEEE. pp. 2003–2011. doi:10.1109/scw63240.
2024.00250.

[192] Wilsdorf, P., Kirchhübel, A.W., Uhrmacher, A.M., 2023. NBSIMGEN:
Jupyter Notebook Extension for Generating Simulation Experiments,
in: 2023 Winter Simulation Conference (WSC), IEEE. pp. 2884–2895.

[193] Wong, T., Wagner, M., Treude, C., 2022. Self-Adaptive Systems: A
Systematic Literature Review Across Categories and Domains. Infor-
mation and Software Technology 148, 106934.

[194] Wootton, D., Fox, A.R., Peck, E., Satyanarayan, A., 2024. Chart-
ing EDA: Characterizing Interactive Visualization Use in Computa-
tional Notebooks with a Mixed-Methods Formalism. arXiv preprint
arXiv:2409.10450 .

[195] Wu, Y., Hellerstein, J.M., Satyanarayan, A., 2020. B2: Bridging Code
and Interactive Visualization in Computational Notebooks, in: Pro-

80

http://dx.doi.org/10.1145/3660247
http://dx.doi.org/10.1109/scw63240.2024.00250
http://dx.doi.org/10.1109/scw63240.2024.00250


ceedings of the 33rd Annual ACM Symposium on User Interface Soft-
ware and Technology, pp. 152–165.

[196] Xin, R., Stallinga, S., Liu, H., Chen, P., Zhao, Z., 2022. Provenance-
enhanced Root Cause Analysis for Jupyter Notebooks, in: 15th Inter-
national Conference on Utility and Cloud Computing (UCC), IEEE.
pp. 327–333.

[197] Yang, C., Brower-Sinning, R.A., Lewis, G., Kästner, C., 2022. Data
Leakage in Notebooks: Static Detection and Better Processes, in: 37th
IEEE/ACM International Conference on Automated Software Engi-
neering (ICSE), pp. 1–12.

[198] Yang, M., Zhou, Y., Li, B., Tang, Y., 2023. On Code Reuse from
StackOverflow: An Exploratory Study on Jupyter Notebook. arXiv
preprint arXiv:2302.11732 .

[199] Yin, D., Liu, Y., Hu, H., Terstriep, J., Hong, X., Padmanabhan, A.,
Wang, S., 2019. CyberGIS-Jupyter for Reproducible and Scalable
Geospatial Analytics. Concurrency and Computation: Practice and
Experience 31, e5040.

[200] Yin, D., Liu, Y., Padmanabhan, A., Terstriep, J., Rush, J., Wang,
S., 2017. A CyberGIS-Jupyter Framework for Geospatial Analytics
at Scale, in: Proceedings of the practice and experience in advanced
research computing 2017 on sustainability, success and impact, ACM.
pp. 1–8.

[201] Yin, P., Li, W.D., Xiao, K., Rao, A., Wen, Y., Shi, K., Howland,
J., Bailey, P., Catasta, M., Michalewski, H., et al., 2023. Natural
Language to Code Generation in Interactive Data Science Notebooks,
in: Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics, Association for Computational Linguistics.
pp. 126–173.

[202] Zheng, C., Wang, D., Wang, A.Y., Ma, X., 2022. Telling Stories from
Computational Notebooks: AI-Assisted Presentation Slides Creation
for Presenting Data Science Work, in: Proceedings of the 2022 CHI
Conference on Human Factors in Computing Systems, pp. 1–20.

81



[203] Zhu, C., Saha, R.K., Prasad, M.R., Khurshid, S., 2021. Restoring the
Executability of Jupyter Notebooks by Automatic Upgrade of Depre-
cated APIs, in: 2021 36th IEEE/ACM International Conference on
Automated Software Engineering (ASE), IEEE. pp. 240–252.

[204] Zhu, J.S., Zhang, Z., Zhao, J., 2024. Facilitating Mixed-Methods Anal-
ysis with Computational Notebooks. arXiv preprint arXiv:2405.19580
.

[205] Zou, Y., Shan, X., Tan, S., Zhou, S., 2024. Can We Do Bet-
ter with What We Have Done? Unveiling the Potential of ML
Pipeline in Notebooks, in: 2024 IEEE International Conference on
Software Maintenance and Evolution (ICSME), IEEE. pp. 499–511.
doi:10.1109/icsme58944.2024.00052.

82

http://dx.doi.org/10.1109/icsme58944.2024.00052

	Introduction
	The Jupyter Notebook Platform
	Unique Features of Notebooks
	Cell-Based Structure
	Execution Order

	Applications of Jupyter Notebooks

	Research Methodology
	Planning the Review
	Identifying the Need for a Systematic Review
	Developing the Review Protocol

	Conducting the Review
	Searching and Selecting Primary Studies
	Extracting Data from Primary Studies
	Synthesizing the Data

	Reporting the Review

	RQ1: How much software engineering research on Jupyter Notebook has been published?
	Year-wise Distributions
	Publication Types
	Publication Venues
	Industry Collaborations
	Replication Packages
	Jupyter Notebook Extensions

	RQ2: Which software engineering topics are being studied in software engineering research on Jupyter Notebook?
	Code Reuse and Provenance
	Code Cloning
	Reusing Code Snippets by Code Search
	Reproducibility
	Provenance

	Managing Computational Environment and Workflow
	Empirical Studies on Workflows
	Computational Environments in Notebooks
	Managing Library Dependencies
	Performance Analysis

	Readability of Notebooks
	Refactoring
	Nonlinear Visualization of Notebooks

	Documentation of Notebooks
	Empirical Studies on Documentation
	Documentation Generation
	Cell Header Generation

	Testing and Debugging
	Empirical Studies on Testing Notebooks
	Detecting Bugs
	Detecting Data Leakage

	Visualization in Notebooks
	Empirical Studies on Visualization in Notebooks
	Interactive Visualization

	Best Practices in Notebooks
	Following Code Style Standards
	Best Practices for Collaborative Use

	Cell Execution Order
	AI-based Coding Assistance for Notebooks
	Supporting other Programming Paradigms
	Datasets of Notebooks

	Future Research Directions
	Threats to Validity
	Conclusion

