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Although Foundation Models (FMs), such as GPT-4, are increasingly used in domains like finance and software
engineering, reliance on textual interfaces limits these models’ real-world interaction. To address this, FM
providers introduced tool calling—triggering a proliferation of frameworks with distinct tool interfaces. In
late 2024, Anthropic introduced the Model Context Protocol (MCP) to standardize this tool ecosystem, which
has become the de facto standard with over eight million weekly SDK downloads. Despite its adoption, MCP’s
AI-driven, non-deterministic control flow introduces new risks to sustainability, security, and maintainability,
warranting closer examination.

Towards this end, we present the first large-scale empirical study of MCP. Using state-of-the-art health
metrics and a hybrid analysis pipeline, combining a general-purpose static analysis tool with an MCP-specific
scanner, we evaluate 1,899 open-source MCP servers to assess their health, security, and maintainability.
Despite MCP servers demonstrating strong health metrics, we identify eight distinct vulnerabilities—only
three overlapping with traditional software vulnerabilities. Additionally, 7.2% of servers contain general
vulnerabilities and 5.5% exhibit MCP-specific tool poisoning. Regarding maintainability, while 66% exhibit
code smells, 14.4% contain ten bug patterns overlapping prior research. These findings highlight the need
for MCP-specific vulnerability detection techniques while reaffirming the value of traditional analysis and
refactoring practices.
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1 Introduction
Foundation Models (FMs), such as GPT-4 [99] and LLaMA [133], have revolutionized Artificial
Intelligence (AI) applications through their powerful capabilities of language understanding, gen-
eration, and reasoning. Their widespread adoption is evident as they are increasingly integrated
into real-world products and applications across domains, e.g., finance [145], healthcare [46], and
software development [142], fundamentally transforming how we interact with technology and
information. Despite this momentum, FMs inherently operate through isolated “textual” interfaces,
limiting their ability to directly interact with dynamic, real-world data sources, APIs, and systems.
As an initial step to bridge this gap, FM providers have introduced capabilities such as func-

tion calling [85, 97] and tool calling [13], commonly known as tool calling, enabling real-world
interactions—for example, booking an appointment using calendar tools. Leveraging these capabili-
ties, AI and Agent frameworks, e.g., LangChain [73], Autogen [16], Pydantic-AI [3], CrewAI [40],
Dify [47] and LlamaIndex [81], have introduced FM-based tool workflows for building AI appli-
cations that can reason about tasks, plan tool usage, and coordinate tool invocation. However, a
significant challenge has emerged from this proliferation: each framework typically defines its own
tool interface and data structure, e.g., a tool defined in one AI framework is not directly portable
in another AI framework, leading to fragmentation that hampers interoperability, scalability, and
consistent security practices.
To address these limitations, Anthropic introduced the Model Context Protocol (MCP) [10]—a

universal, client-server protocol standardizing how AI applications expose tools to FMs. Analogous
to how package managers (e.g., NPM, PyPI [23]) standardized software component reuse across
diverse domains, MCP provides a unified, open standard allowing compliant clients to discover and
invoke tools from a diverse ecosystem of MCP servers, thereby enhancing interoperability in AI tool
usage. Since its introduction in late November 2024, major stakeholders—including Microsoft [86],
OpenAI [98], Google [82], and Cloudflare [38]—have all embraced MCP to support AI applications.
For instance, Microsoft’s Azure MCP server1 allows FMs to interact with Azure services, e.g., cloud
storage and databases. As of May 2025, MCP’s PyPI package receives approximately 1.8 million
weekly downloads [12], and the corresponding NPM package sees about 6.9 million downloads
per week [11]. This swift uptake by industry leaders and strong community engagement through
open-source channels highlight MCP’s growing centrality and further motivate the need to examine
MCP servers through the lens of open-source software concerns such as health, sustainability,
vulnerability, and maintainability.

Similar to other reusable software packages deployed in production environments, e.g., PyPI
and NPM packages, the health, sustainability, security, and maintainability of MCP servers are
critical to ensure long-term growth. Experience from other software ecosystems suggests that
communities prioritize secure, widely adopted, well-documented packages [92]. However, early
studies have demonstrated that FMs can be coerced into utilizing tools from vulnerable MCP servers
to compromise user systems, commonly known as tool poisoning, leading to attacks such as
credential theft and malicious code execution [62, 95]. For example, an MCP server can have a
tool with file write permission, and by manipulating the FM, it can be tricked into adding some
malicious code snippets in the .bashrc file to open a backdoor port for attackers [106]. Given that
the whole point of FM tools is to give FMs autonomy in deciding when and which tool to use, the
presence of potential security (and maintainability) issues in said tools has raised concerns among
industry stakeholders [87].

However, despite these concerns, the current state of publicly available open-source MCP servers
remains unexplored, mainly in terms of critical software dimensions, e.g., health, sustainability,

1https://github.com/Azure/azure-mcp
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Studying the Security and Maintainability of MCP Servers 3

security, and maintainability. Specifically, there is limited empirical understanding of (i) how healthy
and sustainable the MCP ecosystem is, (ii) whether different security vulnerability patterns are
prevalent in these MCP servers, and (iii) what maintainability challenges, e.g., code smells and
bugs, exist in those servers. These gaps are concerning, given the potential impact of unaddressed
software issues. For instance, historically, we know that one Heartbleed vulnerability alone caused
an estimated USD $500 million in damages globally [124] in 2014, and recent industrial reports
suggest that mature organizations may spend up to £250,000 (USD $332,500) per system annually
on software maintenance [54]. Without rigorous empirical analysis of these three dimensions, the
community lacks the measures to mitigate such risks and issues proactively.
To bridge this gap, we conduct the first large-scale empirical study on health, sustainability,

security vulnerabilities and maintainability issues across 1,899 MCP servers. To date (Jun 1, 2025)
our dataset consists of 343 MCP servers from the official MCP collection [105] complemented by
1,556 MCP servers mined from open-source repositories hosted on GitHub. By analyzing these
MCP servers, we aim to answer the following Research Questions (RQs):

RQ-0: How healthy and sustainable are MCP servers?
Motivation. As MCP is becoming a crucial part of the AI application ecosystem, it is es-
sential to understand how healthy and sustainable the MCP ecosystem currently is. Prior
studies have reported that different development (commits, CI adoption, etc.) and community
metrics (contributor count, contributor reputation, issue activity, etc.) can act as indicators of
health and long-term sustainability [39, 53, 146]. As development metrics reflect continuous
maintenance activity and community metrics capture stakeholder engagement, we can un-
derstand the current state-of-the-art health and sustainability characteristics of MCP servers
by studying these metrics and interpreting them in contrast to general OSS and Machine
Learning(ML) software metrics.
Findings.MCP servers demonstrate strong development and community metrics with an
average of 5.5 commits/week (vs. traditional software 2.5 commits/week) and a slightly
higher CI adoption rate (42.2% vs. traditional 40.3%), comparable median contributor count
(2.0 vs. 2.0), but significantly higher social reach in terms of median follower count of
the contributors (129.6 followers vs. traditional 37.3), and a slightly slower median issue
resolution time (5.6 days vs. traditional 4.0 days).

RQ-1: To what extent do MCP servers contain security vulnerabilities?
Motivation. Prior studies have reported that at least 46% of Python packages contain security
vulnerabilities [113] and the average cost of some security incidents, e.g., data breach,
can be USD up to $4.5 million [63]. The potential risk may be even higher in the context
of MCP servers, as these systems bridge foundation models with databases, file systems, and
APIs, with humans handing off control to FM models. To understand the actual risks, we
need to characterize the vulnerability patterns of MCP servers, analyze those against the
known traditional software engineering vulnerabilities, and evaluate the effectiveness of
current vulnerability detection tools in identifying MCP-specific issues.
Findings. To explore the vulnerability landscape of MCP servers, we apply a traditional
vulnerability detector, SonarQube, and identify that 7.2% of MCP servers are affected by
eight distinct vulnerability patterns, with credential exposure being the most prevalent
(3.6%). Only three of those vulnerabilities overlap with known ecosystem vulnerabilities.
However, by applying an MCP-specific scanning tool [71], we uncover 5.5% MCP servers
suffer from tool poisoning, which indicates that traditional tools only find part of the
whole landscape and we need more robust MCP-specific vulnerability detection techniques
and tools.

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: 2025.
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RQ-2: To what extent do MCP servers contain maintainability issues?
Motivation. Prior studies have reported that maintainability issues, e.g., code smells, can be
linked to bugs or fault-proneness [100]. Software development teams can spend up to 39% of
maintenance effort on fixing these in mature projects [9]. As an emerging new technology,
the maintainability landscape of MCP servers, e.g., code smells and bugs, is still unknown to
the community. To understand the impact of these maintainability issues on MCP servers,
we need to characterize the code smells and bugs and analyze those against the known
traditional software engineering issues to evaluate the long-term impact.
Findings. MCP servers exhibit similar code smell and bug patterns like traditional
software engineering domain. In the long term, we suspect these code smells, and bugs
can incur significant maintainability issues in the MCP domain, as observed in traditional
software engineering [54]. We report a taxonomy of ten code smells and nine bugs in MCP
code. We also find that 66% MCP servers have critical or blocker-level code smells, where
high cognitive complexity is the most prevalent smell and 14.4% MCP servers have
critical or blocker level-bugs.

The main contributions of our paper are as follows:
(1) Dataset: We present the first curated dataset of open-source MCP servers [57], collected

from both officially listed and mined GitHub repositories which can serve as a foundational
asset for future research on MCP.

(2) Analysis Framework and Baselines: We develop and apply a hybrid analysis framework
combining general-purpose static analysis tools (e.g., SonarQube) with emergingMCP-specific
scanners (e.g., mcp-scan). Beyond tooling, we establish interpretive baselines for the health,
security, and maintainability of emerging open-source projects, e.g., for MCP servers, through
a structured literature review, which can serve as a baseline for future empirical studies
across other new open-source software domains.

(3) Implications:
• We present the first large-scale empirical study of the MCP ecosystem, examining its health,
sustainability, security, and maintainability. We uncover general vulnerabilities in 7.2% of
MCP servers and MCP-specific vulnerabilities in 5.5% of them. Additionally, we report the
prevalence of maintainability issues, e.g., 66% of MCP servers have code smells, and 14.4%
have bugs.

• Although MCP-specific vulnerabilities can be more prevalent than traditional ones, they are
hard to detect by both traditional and emerging MCP-specific tools, highlighting the need
for dedicated research on MCP-specific vulnerability detection and mitigation techniques.

• Maintainability issues of MCP servers, e.g., code smells and bugs, are closely related to
traditional software engineering, suggesting that existing refactoring and debugging tools
and techniques can be adapted for the MCP ecosystem.

The remainder of this paper is outlined as follows. Section 2 provides a motivating example for
MCP. Section 3 provides background information. Section 4 gives an overview of related work.
Section 5 describes the design of our study. Section 6 presents the results. Section 7 discusses the
implications of our findings. Section 8 outlines threats to the validity of our study, and Section 9
concludes the paper.

2 A Motivational Example
Developing real-world AI applications with FMs demands seamless orchestration of diverse compo-
nents. To motivate the role of MCP and it’s challenges studied in this work, we present a common
scenario faced by AI application developers while integrating FMs in the real world.

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: 2025.
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Fig. 1. A motivating example of developing FM-based AI applications. In (a), Alex developed an AI application
using framework A and did not need any custom tools. In (b), when enhancing an existing application written
in framework B, they had to build a custom stripe tool because B does not support A’s built-in tools. In (c),
they had to re-implement the same stripe tool again with a different interface to integrate it into the C
framework. In contrast (d), where MCP servers offer a way to decouple tools from frameworks and enable
interoperability — but raise new questions around sustainability, security, and maintainability.

Alex is an AI engineer responsible for building and maintaining FM-based AI applications. They
have been tasked with developing a conversational shopping assistant that lets users chat about
products, receive recommendations, and complete purchases via Stripe. Alex begins by exploring
whether a single FM can handle the entire flow—from product discovery to payment—but quickly
realizes that:
(1) Finding products requires a dedicated search mechanism (e.g., web search APIs).
(2) Recommending products needs an LLM to synthesize and rank the discovered products

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: 2025.
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(3) Collecting payments needs a payment gateway, e.g., Stripe integration.

Alex learned they need tools, a self-contained implementation of some functionalities that
connect a model to existing APIs or data sources, to accomplish 1 and 3. After exploring several
AI application frameworks that can coordinate different tools, Alex opted for framework A (for
example, LangChain) as it has an extensive library of pre-built tools, including various search
integrations (e.g., Google Search, Bing Search) and, importantly, a tool for Stripe integration.

Scenario 1: The Good. Using framework A, Alex builds an AI application to orchestrate a user
purchase workflow. When a user expresses a requirement, the system: (1) sends the query along
with available tools (e.g., search and Stripe) to the FM; (2) invokes the search tool when the FMs
instructs to do so (e.g., with keywords, brands, sites) and returns the results; (3) presents the FM’s
synthesized results to the user and collects the product choice; and (4) executes the Stripe tool,
based on the FM’s instruction to complete the payment.
Scenario 2: The Bad. The shopping assistant quickly gained popularity, particularly its inte-

grated payment feature, which encouraged a new requirement: integrating Stripe-based donation
collection to an existing fundraising AI application built with coordination framework B, for ex-
ample LlamaIndex. As B did not have a Stripe tool, Alex attempted to reuse the A’s Stripe tool
but found it incompatible; A’s tool interfaces, invocation methods, and data handling mechanisms
fundamentally differed from B ’s expectation. Consequently, Alex ended up re-implementing a
custom Stripe tool for B.
Scenario 3: The Ugly. Soon after, another team required to add Stripe payments to their AI

analytics app built with framework C, e.g., Pydantic-AI, to collect premium membership fees. Again,
no built-in tool existed. Alex attempted to adapt their custom B Stripe tool, but C’s tool interface
prevented reuse, forcing them to consider a third bespoke Stripe implementation.

Through this series of experiences, Alex realized the critical root problem: a fundamental lack of
tool interoperability and standardization within the FM-based AI application ecosystem.

Scenario 4: The Promise. To address this, Alex explores the emerging Model Context Protocol
(MCP), which standardizes how FMs discover and invoke external capabilities via standard interfaces
without any hard coupling with the framework behind the AI application. After MCP’s release,
Alex finds several Stripe MCP servers from open-source community. They realize that they can
now integrate these directly into any of their applications, as long as the applications leverage the
MCP protocol, finally eliminating duplicated effort and code.

Scenario 5: The Challenge.However, payment processing is highly sensitive for both customers
and Alex’s company. As a revenue-generating application, they require the Stripe MCP server
to be sustainable, e.g., regularly developed and bug-fixed. Moreover, they must guard against
security vulnerabilities compromising sensitive customer data (e.g., credit card numbers) and the
maintenance issues of downstream applications. Given the availability of multiple Stripe MCP
servers from various communities, they are now perplexed about how to determine:

(1) Which MCP servers are the most healthy and sustainable for their critical AI applications?
(RQ-0)

(2) How can they verify an MCP server’s security to protect sensitive customer data (e.g.,
credentials, credit card details)? (RQ-1)

(3) How can they assess an MCP server’s maintenance quality, such as its likelihood of having
bugs or smells? (RQ-2)

In this study we want to explore these challenges through quantative and qualitative analysis.

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: 2025.
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3 Background
3.1 Tool Landscape for FM-based AI Applications
3.1.1 Tools for FM. Foundation models (FMs) are pre-trained on massive datasets to internalize
broad linguistic patterns and world knowledge. They rely entirely on their statically encoded
parameters (weights) at inference time and cannot access information beyond their pre-training
data [24, 26]. Though Retrieval-Augmented Generation (RAG) augments FMs with domain-specific
textual context [77], FMs are still confined to generating only text output. To interact with the real
world, FM-based AI applications use tools, which are external interfaces performing operations
on behalf of the model, ranging from web search, database queries, and API invocation to code
execution and hardware control. These primitives enable AI applications to fetch real-time data,
interact with user interfaces, and trigger real-world actions. However, setting up those tools for
proper use can be challenging and time-consuming [58].

3.1.2 AI Frameworks. Several tool-centric frameworks have emerged in recent years to support
the development of FM-based AI applications and AI agents. Examples include LangChain [73],
Autogen [16], and LlamaIndex [81]. These frameworks provide infrastructure, abstractions, and
orchestration mechanisms for building AI applications and agents to reason about tasks, plan tool
usage, and coordinate tool invocation to pursue user-defined goals.

3.1.3 Tool Workflow. Most frameworks offer built-in tools and provide support for creating custom
tools to enable AI applications to specify a step-by-step tool workflow. As illustrated in our
motivating example Figure 1a, once the user expresses an “intent,” the AI application formats the
request, retrieves the available tools, and bundles them into a prompt for the FM. The FM then plans
an execution path and guides the AI application through a series of tool calls and interactions to
fulfill the tasks, e.g., using a search tool to find products, collecting user preferences via interaction,
and calling a payment API through Stripe tool to complete the purchase journey.

3.1.4 Shortcomings of Framework-Specific Tools. While these frameworks support FM-tool integra-
tion, they also introduce significant interoperability challenges due to their siloed operation [58].
Each framework defines its schema for tool registration, invocation, and response formatting,
leading to compatibility issues. For example, a Stripe tool implemented for LangChain may not
function seamlessly with AutoGen or LlamaIndex because of differences in input specifications and
data contracts. Moreover, tools are often tightly coupled with their originating frameworks and
lack standardized discoverability mechanisms, making reuse difficult. So, the application built on a
specific framework is limited to using the tools provided only by that framework and misses the
opportunity to integrate any other outside tools. This fragmentation mirrors early challenges in
software engineering, which were eventually addressed through standardized packaging systems
like NPM [152] or PyPI [104], enabling consistent reuse, interoperability, and lifecycle management.

3.2 Model Context Protocol(MCP)
To address the lack of standardization and enable reusable tools across frameworks, Anthropic
introduced the Model Context Protocol (MCP) [10], a universal protocol for tool discovery and
invocation in FM-based AI applications and AI agents. MCP decouples tools from frameworks by
introducing a client-server architecture where tools are hosted in standalone “MCP servers”, and
AI applications or agents interact with them through a standardized “MCP client” as illustrated in
Figure 2. MCP empowers tool vendors to publish any services with a defined interaction method,
e.g., SDK, API, or any other protocol, as standalone MCP servers just once, instantly making those
capabilities discoverable and invocable by any MCP-compliant AI application. This plug-and-play
model eliminates code duplication, drastically lowering development overhead and accelerating

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: 2025.
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the adoption of new tools across FM-based AI application ecosystems. Additionally, MCP enables
AI application developers to use a variety of tools with any MCP-aware model, ensuring high
reusability.

Host with MCP Client

MCP Server A

Tools Prompts Resources

MCP Server B

Tools Prompts Resources

MCP Server C

Tools Prompts Resources

Foundation Models

Search

Database

transport: sse

R
E
F
L
E
C
T
I
O
N

transport: stdio

transport: stdio

Ext. Service

Fig. 2. High-level overview of MCP client-server architecture

3.2.1 MCP Workflow. In a typical MCP workflow, the AI application delegates the tool invocation
responsibilities to an MCP client instead of using framework-specific tools. The MCP client begins
by querying all installed MCP servers using reflection (more details below) to discover available
tools, e.g., search tools and Stripe payment tools from our motivating example. It then extracts
the tools’ data, e.g., name, description, and interface signature, constructs a prompt incorporating
these, and finally sends that to the FM. The FM analyzes the request, determines the sequence of
tool invocations, and instructs the client about which tool to invoke with what parameters. During
tool orchestration, the MCP client obtains the user’s permission before invoking any tool, e.g.,
searching for products or making payments. Importantly, there is no tight coupling between tools
and or AI applications, allowing tools to be reused and accessed across different AI applications
and frameworks.

3.2.2 MCP Server. An MCP Server wraps the functionalities of one or more external services or
data sources and exposes those in a standardized manner via the MCP protocol. It handles input
validation, tool execution, and response formatting. Each server can host one or more tools and run
locally or remotely. For example, a real-world Stripe MCP [131] server needed for our motivational
example exposes tools for reading balance, creating invoices, paymentLinks and issuing refund.

3.2.3 Reflection. Reflection refers to an MCP server’s ability to dynamically expose its capabilities
and metadata obtained from the docstring or schema description of tools to the client, enabling
runtime capability discovery. For instance, a client can query the Stripe MCP server [131] to discover
available tools (“balance.read”, “payment links.create”, “refunds.create” etc.), read the description of
those tools, inspect required parameters, and validate data types—without any prior hard-coding.

3.2.4 Transport. MCP supports local (“StdIO”) and remote (“SSE over HTTPS”) communication pro-
tocols. This makes it adaptable to various environments, from embedded use in desktop applications
to cloud-based server deployments.

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: 2025.
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3.2.5 MCP Client. An MCP Client manages the communication between the FM and one or more
MCP servers. It retrieves tool schema descriptions, mediates FM-guided calls, and ensures user
approval for different tool execution.

3.2.6 MCP Registries. Inspired by the success of package managers (PyPI, NPM), the MCP com-
munity has developed several MCP Registries, e.g., Smithery [126], Glama [2], and Cloudflare
Workers [38]. These registries serve as searchable registries where developers can publish and
discover MCP servers. For example, at least two “Stripe MCP Servers” are available on Glama,
providing similar payment integration with Stripe, which can be utilized by any AI application to
accomplish the payment example we have described in the motivating example2, 3.

4 Related Work
4.1 Health and Long-Term Sustainability of OSS
Since the introduction of the bazaar model of software development [109], open-source software
(OSS) has evolved from a fringe movement to a foundational element of global software software
ecosystem [36]. Despite its success, concerns around the long-term sustainability of OSS projects
have persisted [39]. While there are community initiatives (e.g., CHAOSS [53]) to identify and
consolidate the health and sustainability metrics for open-source projects, academic research has
also sought to identify early warning signs of project failure, e.g., lack of contributions, insufficient
community engagement, or maintainability bottlenecks [17, 39]. On the other hand, multiple studies
identify factors like user base, language translation, responsibility distribution, and modularity to
exert a positive impact [88] in the open-source software lifecycle. More recent work emphasizes
early-stage repository metrics, including commit frequency, contributor count, contributor repu-
tation, issue responsiveness, build frequency, and CI adoption as strong predictors of long-term
healthy sustainability [52, 115, 146].
However, the strength of these predictors varies by project type and maturity, and very few

studies have evaluated them in the context of rapidly evolving software paradigms like MCP servers.
While MCP servers functionally resemble traditional reusable OSS components (PyPI or NPM
packages), they operate under unique constraints, e.g., integration with foundation models and
system-level tool orchestration. While sustainability and evolution have been extensively studied in
PyPI [23, 135] and NPM [92], to the best of our knowledge, no prior study has empirically assessed
the sustainability of MCP servers. Our work addresses this gap by adapting established metrics to
this emerging domain and assessing their applicability.

4.2 Security Vulnerabilities in OSS and Package Ecosystems
On the other hand, security remains a critical concern in open-source ecosystems. Historically,
we have observed that one single vulnerability in an open-source project, e.g., Heartbleed from
OpenSSL, can bring the whole software industry down globally [138]. So, it is imperative to detect
and resolve vulnerabilities in open-source software. To proactively detect vulnerabilities, researchers
have developed a wide range of approaches, including static analysis tools [66, 68, 125], machine
learning-based classifiers [120], and more recently, foundation model (FM) based tools [119, 148].
Empirical studies using these techniques have revealed persistent security risks across major OSS
ecosystems, including NPM and PyPI [6, 45, 154]. Although many of these vulnerabilities are of
moderate severity [112], their impact can be significant when embedded in popular transitive
dependency chains [117].

2https://glama.ai/mcp/servers/@stripe/agent-toolkit
3https://glama.ai/mcp/servers/@atharvagupta2003/mcp-stripe
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As an emerging domain, we also observe growing research to identify potential security loop-
holes in the MCP ecosystem. Common threats proposed include tool poisoning, command injection,
installer spoofing, and configuration drift [62, 70]. More severe exploits demonstrating Malicious
Code Execution (MCE), Remote Access Control (RAC), Credential Theft (CT), and novel Retrieval-
Agent Deception (RADE) attacks have been demonstrated to bypass standard LLM guardrails [106].
However, despite these demonstrations, a wide gap exists in understanding the real-world preva-
lence of such vulnerabilities across the MCP ecosystem. Existing studies have primarily focused on
controlled examples and proof-of-concept attacks, but no empirical investigation has yet examined
how frequently these issues occur in publicly available MCP servers. Our study aims to bridge that
gap by analyzing open-source MCP servers using general-purpose software engineering tools and
MCP-specific vulnerability scanners.

4.3 Maintainability of OSS
For MCP servers to be broadly adopted in software ecosystems, they must be reusable and maintain-
able without imposing undue developer burden. Like traditional OSS, MCP servers are community-
maintained and thus susceptible to the similar long-term maintainability risks [27, 118]. In OSS
research, two significant maintainability dimensions have been extensively studied: (i) code smells,
e.g., structural issues that hinder code readability and evolution, and (ii) bugs, e.g., functional errors
that can lead to failures [34, 100, 121, 134, 150]. Together, these issues can consume up to 39% of
team effort in software projects [9].

Prior work has established code smells, e.g., high cognitive complexity, as positively associated
with low maintainability [44], and that low maintainability can lead to project mortality [39].
Additionally, studies have correlated higher bug severity with increased maintainability issues [34]
in open-source projects. Similar to vulnerability, to detect such maintainability issues, researchers
have developed a broad range of techniques, including static analysis [56, 75], machine learning-
based approaches [147], and more recently, foundation model-based techniques [144].

Despite these advances, no prior study has evaluated maintainability risks in the MCP ecosystem,
e.g., code smells and bugs. To address this gap, we analyze MCP servers using static analysis tools
to assess the prevalence of code smells and bugs.

5 Methodology
This section presents the methodological framework of our study for evaluating the health and
sustainability metrics, vulnerabilities, code smells and bugs of open-source MCP servers. We begin
by constructing a comprehensive dataset of MCP server repositories. First, we collect officially listed
MCP servers from Anthropic’s GitHub repository. We then mine GitHub to identify additional
repositories that use official MCP SDKs and enhance Anthropic’s list with the mined results.
To assess health and sustainability, we collect repository-level metadata (e.g., commit activity,
contributor count) from GitHub for each MCP server. For security and maintainability evaluation,
we perform static analysis using the state-of-the-art SonarQube [29], focusing on vulnerabilities,
code smells, and bugs. Additionally, to identify MCP-specific security risks, e.g., tool poisoning, we
apply the mcp-scan tool [71] to a representative sample of MCP servers.
Next, we apply an LLM-based jury technique [80] to synthesize and cluster the static analysis

results into interpretable vulnerability, smell, and bug patterns and validate these patterns through
manual analysis on randomly selected samples. Finally, we conduct a structured literature review
to extract baseline metrics and defect (e.g., vulnerabilities, code smells, and bugs) taxonomies from
related ecosystems (e.g., PyPI, NPM, ML codebases). These baselines are used to contextualize and
contrast our findings on MCP servers. An overview of our study design is presented in Figure 3.
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Fig. 3. Overview of the study design.

5.1 Data Collection
5.1.1 Extracting from Anthropic’s official repository. Anthropic has published a list of MCP servers
in their official repository and maintains the list actively. We start with this list of MCP servers
maintained by Anthropic in their official Model Context Protocol repository4. In this repository,
Anthropic classifies MCP servers into two major categories:

• Official Integrations: MCP servers maintained by organizations that build production-
ready integrations for their platforms. For example, the AWS MCP server5 is maintained by
Amazon’s AWS Labs.

• Community Servers:MCP servers developed and maintained by independent community
members or contributors for various use cases. One such example is the MCP server built for
the DeepSeek R1 model6.

We identify 88 official and 255 community integrations listed in Anthropic’s repository on Mar
19, 2025. For each identified repository, we record the repository name and GitHub URL in an
Elasticsearch database.

4https://github.com/modelcontextprotocol/servers?tab=readme-ov-file
5https://github.com/awslabs/mcp
6https://github.com/66julienmartin/MCP-server-Deepseek_R1
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Table 1. Distribution of integration types across programming languages

Language Official Community Mined Total Count

Python 20 73 103 196
JavaScript 13 39 63 115
TypeScript 22 52 153 227
Others 6 20 19 45
Total 61 184 338 583

5.1.2 Mining GitHub for SDK imports. We anticipate that, in addition to the repositories listed
by Anthropic, many other MCP servers have been developed by independent contributors. To
expand the coverage of our dataset, we mine GitHub for open-source MCP server implementations.
Specifically, we search for the usage of MCP SDKs within publicly available source code. Alongside
the introduction of the MCP server framework, Anthropic released SDK libraries for several
popular programming languages, including Python, JavaScript, and TypeScript. These SDKs enable
community members to build MCP servers using a standardized interface.

To identify relevant repositories, we use targeted search terms that correspond to known MCP
SDK import patterns. For JavaScript and TypeScript, we search for the string @modelcontextprotocol/sdk,
and for Python, we use the term from mcp.server. These queries are executed using the GitHub
Code Search API,7 following practices used in prior studies [78].
Using this approach, we identify a total of 1,715 repositories that import MCP server SDKs.

Cross-referencing these with the repositories listed in Anthropic’s official documentation, we find
that 159 are already included as either official or community integrations. We label the remaining
1,556 repositories asminedMCP servers and store them in our Elasticsearch index. The cut-off
date for MCP server mining is Mar 20, 2025.

5.1.3 Filtering the Toy Repositories. To ensure the quality of the MCP servers in our dataset, we
filter out toy projects based on GitHub popularity. Following established practice in prior work [42],
we exclude MCP server repositories with fewer than ten stars, resulting in a collection of 583 MCP
servers. Although our mining process targets MCP servers using Python, JavaScript, or TypeScript
SDKs, we observe several repositories whose dominant language fell outside these categories. This
discrepancy arises because the Github API reports one dominant programming language in API
from any polyglot project, e.g., projects containing code in multiple programming languages. We
classify these under the label “Others”. Table 1 shows the final distribution across integration
types(e.g., official, community, and mined) and programming languages.

5.1.4 Mining and storing repository metrics. After mining all the repositories, we identify a consol-
idated set of 14 state-of-the-art metrics as operational proxies from Community Health Analytics
in Open Source Software (CHAOSS) project [31] and prior literature [52, 53, 61, 130, 146] for evalu-
ating the health and sustainability of MCP ecosystem. We then develop a script to automatically
collect these metrics using the GitHub REST API for each of our dataset’s 583 MCP server reposi-
tories. To ensure traceability and data reuse, we store the raw and processed metric values in an
Elasticsearch-based data store, with one document per repository containing all extracted fields.

5.2 Static Analysis of Source Code
5.2.1 Analyzing with Traditional Tool. To analyze software vulnerabilities, code smells, and bugs
in MCP servers, we apply static analysis using SonarQube [29], a widely used open-source tool.
7https://docs.github.com/en/rest/search/search?apiVersion=2022-11-28#search-code
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Compared to FindBugs [43] and PMD [102], SonarQube offers broader language support (over 30
languages) and does not require compiled bytecode. SonarQube evaluates code using a rich set of
predefined rules aligned with industry-standard security benchmarks such as MITRE CWE Top
25 [91], OWASP Top 10 [7], and PCI DSS [96]. Beyond vulnerabilities, SonarQube is also popular
for identifying maintainability concerns such as code smells and bugs [151].
Given the scale of our dataset (583 repositories), we develop an automated workflow that (i)

clones the target repository from GitHub; (ii) analyzes it using a Docker-based SonarQube CLI
setup; and (iii) extracts issue-level metadata via the SonarQube Web API8, and (iv) stores results
in Elasticsearch for efficient retrieval. The scan time for individual repositories ranges from 30
seconds to 5 minutes, depending on project size. All analyses were completed within four days on
a dedicated M3 Macbook Air machine.

5.2.2 Analyzing with MCP-specific Tool. In addition to general software vulnerabilities, MCP-
specific vulnerabilities, e.g., tool poisoning, are increasingly discussed in recent literature [95].
Industry efforts have also emerged to address these concerns, with companies like Invariant Labs
releasing dedicated MCP scanners, such as mcp-scan [71].
However, scanning with this tool requires a rigorous setup with steps like installing the MCP

server alongwith the relevant infrastructure components such as Docker [48], collecting configuration-
specific environment variables, e.g., API tokens and credentials, and installing dependencies. As
this process is laborious and time-consuming, we decided to scan a subset of representative MCP
servers. Using a 95% confidence level and 10% margin of error, we randomly sample 83 repositories
from our complete set of 583 MCP servers. We then manually scan these 83 repositories using
mcp-scan to identify potential instances of tool poisoning.

5.3 Clustering the Issues
5.3.1 Extracting Unique Issues and Violated Rules. We analyze the findings generated by Sonar-
Qube across MCP server projects, focusing on identified security vulnerabilities, code smells, and
bugs. Any violation of SonarQube’s rules9 is termed an “issue” with a type of “vulnerability” or
“code_smell” or “bug”, and an experience “severity” is assigned to that issue. SonarQube uses five
major severity types [127]:
(1) Blocker : Problems that can cause severe unintended consequences, such as crashes, security

breaches, and require immediate resolution.
(2) Critical: An issue with a critical impact on the application that should be fixed as soon as

possible.
(3) Major : An issue with a major impact on the application.
(4) Minor : An issue with a minor impact on the application.
(5) Info: There is no expected impact on the application. For informational purposes only.
We extract the issue instances including metadata such as issue type, severity level, violated rule

identifier, and rule description. We then synthesize the findings by deduplicating the rule violations
and organizing them into three distinct sets corresponding to vulnerabilities, code smells, and bugs.
This categorization enables further statistical and qualitative analysis in subsequent phases of our
study.

5.3.2 Applying LLM Jury. To uncover broader recurring patterns across these issues, we cluster
each set of unique issues into higher-level abstract patterns. For this clustering task, we adopt
an LLM-Jury approach following prior works [79]. We use LLM-Jury, as this type of system has
8https://docs.sonarsource.com/sonarqube-server/10.4/extension-guide/web-api/
9https://rules.sonarsource.com/
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Table 2. Search strategies used in our literature review to identify comparable baselines for four review items:
health and sustainability metrics, security vulnerabilities, code smells, and bugs. For each item, we crafted
structured search strings using key variables, and systematically explored all combinations of their values in
Google Scholar.

Review Dimension Search String Variables

RQ-0: Health & Sustain-
ability Metrics

<measurement_type> + <met-
ric_name> + “empirical study”

measurement_type: median, mean, av-
erage, prevalence
metric_name: RQ-0 Metrics ( Table 4)

RQ-1: Vulnerabilities “vulnerability” + “security” + “preva-
lence” + <domain_name>

domain_name: PyPI, NPM, IaC, Python,
JavaScript

RQ-2: Code Smells “code smell” + “prevalence” + <do-
main_name>

domain_name: PyPI, NPM, Python,
JavaScript

RQ-2: Bugs 1. “bugs” + “prevalence” + <do-
main_name>
2. “static analysis” + “defects”
3. <bug_pattern> + <domain_name>

domain_name: Python, JavaScript,
None
bug_pattern: RQ-2 Bugs ( Table 9)

already shown significantly close human-model inter-rater agreement in contrast to human-human
agreement in different software engineering tasks, e.g., labeling or annotations, and reduces human
effort [1, 67]. We follow the pairwise judge cognitive architecture [80], where each of the worker
LLMs assigns a cluster label for each identified issue independently based on the violated rule name,
description, impact, and language. Finally, the judge LLM reviews the same artifacts along with the
outputs from each worker and determines the most appropriate thematic pattern for each issue.
We use claude-3.7-sonnet and gpt-4o as worker LLMs, and gemini-2.5-pro as the judge LLM.
Through this LLM-Jury process, we generate high-level thematic patterns that characterize the
most common types of vulnerabilities, code smells, and bugs in the MCP server ecosystem.

5.3.3 Validating the Issue Patterns Identified by LLM-Jury. While prior work [80] reports a sufficient
inter-rater agreement between LLM-Jury and human annotators, we independently validate its
clustering results on our dataset. We randomly sample 25 issues from each category (vulnerabilities,
code smells, and bugs), resulting in 75 samples. Each of the first two authors of this study works
as a human reviewer and independently labels each issue. Then, two human reviewers resolve
the disagreements, e.g., around naming and granularity, through discussions. Finally, to quantify
agreement, we compute Fleiss’ Kappa [51] across all three raters: the two human reviewers and
the LLM-Jury system. We observe that all three raters have a perfect agreement for vulnerabilities
(𝜅 = 1.0) and near-perfect agreement for code smells and bugs (𝜅 = 0.9), indicating high confidence
in the quality of the issue patterns derived by the LLM-Jury system.

5.4 Finding Comparable Baselines
To contextualize our findings on MCP server health, security, and maintainability, we systematically
review prior literature in order to extract comparable baselines across our study dimensions: health
and sustainability metrics, vulnerabilities, maintainability issues, e.g., code smells, and software
bugs. Given the novelty of the MCP domain and the breadth of our measurement targets, locating
baselines for all dimensions is non-trivial.

We construct structured search strings and perform 135 literature searches on Google Scholar, as
summarized in Table 2.
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For each search, we varied key variables (e.g., metric names, bug patterns, domains), resulting in
96 searches for metrics, 5 for vulnerabilities, 4 for code smells, and 30 for bugs. We systematically
examine the top 50 results per search and include studies based on the following criteria: (i) peer-
reviewed venue, (ii) empirical focus on open-source ecosystems, and (iii) domain relevance (e.g.,
Python, JavaScript, ML, IaC). After detailed analysis and examination based on these filters, we
find a total of 40 prior studies to contrast the baselines we need for our three research questions.
We summarize the selected studies in Table 3.

From the studies related to RQ-0 in Table 3, we systematically extract health and sustainability
metrics values (e.g., median commit frequency). For RQ-1, we identify vulnerability taxonomy
and prevalence in prominent ecosystems, e.g., PyPI, NPM, and IaC, from the associated studies.
Similarly, from the studies associated with RQ-2, we first extract the taxonomies and quantitative
prevalence of code smells and bugs in traditional software domains; these studies also allow us to
ascertain the prevalence of specific bug types (later identified in MCP servers) within these other
domains. The collective data on metrics, taxonomies, and prevalence from these diverse sources
form the baseline for our comparative analysis. This review process consumed approximately 60
person-hours, performed by the first two authors, and ensured that our comparisons to traditional
software ecosystems are grounded in representative and methodologically sound sources.

6 Results
6.1 RQ-0: How healthy and sustainable are MCP servers?
Motivation. Open-source software (OSS) projects often face sustainability challenges, with studies
reporting that over 20% become inactive within the first year and nearly 50% by the fourth year [4].
This attrition poses risks to downstream applications that depend on these projects. Prior studies
have found that some early-stage metrics can work as indicators of health and sustainability:
development metrics (e.g., commit frequency, adoption of continuous integration) reflect ongoing
maintenance, while community metrics (e.g., number of contributors, contributor reputation, and
issue activity) signal developer engagement [39, 53, 130, 146].

As MCP adoption grows, understanding the ecosystem’s sustainability becomes increasingly crit-
ical. However, no prior work has investigated how these established metrics behave in MCP servers.
In this study, we use these metrics to study MCP servers, assessing their health and sustainability
from development activity and community involvement points of view. To interpret our findings,
we contrast the development and community metrics of MCP servers with applications from general
OSS and machine learning (ML) domains and provide a comparative baseline that clarifies whether
MCP development trajectories align with healthy and sustainable software ecosystems.

Approach. We identify 14 repository-level metrics from existing literature that can be used to
assess the health and sustainability of MCP servers, and mine those using the GitHub REST
API as described in Section 5.1.4. Automated scripts fetch metrics related to commit frequency,
contributors, stars, forks, project size, issue lifecycle, and builds. From existing literature, we gather
similar metrics for general OSS and ML applications. In case when we did not find some metrics’
value for the ML domain in the existing literature, we still interpret the findings relative to general
OSS metrics. Additionally, we compare the metrics across the three MCP integration types, i.e.,
official, community and mined, to understand whether some metrics are better for some types
of MCP servers. To analyze this, we apply the Kruskal-Wallis H Test [84] followed by pairwise
Mann-Whitney U tests with Bonferroni correction [114]. We also measure the effect size through
Cliff’s delta [83].

Findings. MCP servers demonstrate higher or equal median values in 9 out of 14 key
development and community metrics in comparison to OSS and ML baselines, indicating
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Table 3. Summary of the 40 selected studies reviewed to identify comparable baselines for our three research
questions, ordered by publication year.

RQ Study Purpose

RQ-0

Herraiz et al., 2009 [60] An empirical study on OSS analyzing their evolution
Kerzazi et al., 2014 [69] A study to measure the impact of build breakage
Borges et al., 2016 [25] A study on the popularity of software systems hosted at GitHub
Hilton et al., 2016 [61] Understanding the usage of CI systems
Coelho et al., 2017 [39] Reasons Behind the Failure of Modern Open Source Projects
Baltes et al., 2018 [19] A study on the Influence of CI on Commit Activity
Zou et al., 2019 [155] An empirical study on branch usage in GitHub projects
Bao et al., 2019 [20] Predicting newcomers’ transition to long-term contributors
Chen et al., 2020 [33] A study on characterizing real-world build times
Goggins et al., 2021 [53] Exploring the metrics related to health and sustainability
Moid et al., 2021 [90] A study to predict repository stars using smart models
Ait et al., 2022 [4] Assessing survival rate of GitHub projects
Xiao et al., 2023 [146] Exploring the long-term project sustainability on GitHub
He et al., 2023 [59] A study to evaluate the effectiveness of Dependabot
Idowu et al., 2024 [64] A study on OSS ML projects, focusing on evolution
Lai et al., 2024 [72] Comparison between ML and non-ML issues in OSS AI projects
Bernardo et al., 2024 [22] Exploring CI adoption practices in ML projects

RQ-1

Rahman et al., 2019 [107] An empirical study of security smells in IaC scripts
Wist et al., 2021 [143] An empirical study on vulnerabilities in Docker Hub images
Ruihonen et al., 2021 [113] A security-oriented static analysis of Python packages in PyPI
Latendresse et al., 2022 [74] Analyzing security risks of JavaScript dependencies in NPM
Zerouali et al., 2022 [153] A study on vulnerabilities affecting NPM and RubyGems packages
Alfadel et al., 2023 [6] An analysis of security vulnerabilities in Python packages

RQ-2

Ayewah et al., 2007 [18] A study of warnings found by FindBugs in Java programs
Yamashita et al., 2012 [150] How well code smells reflect factors affecting maintainability
Park et al., 2015 [101] An analysis of HTML and CSS syntax errors
Tufano et al., 2015 [134] Understanding when and why bad smells are introduced
Saboury et al., 2017 [116] An empirical study of code smells in JavaScript projects
Rice et al., 2017 [110] An algorithm to detect method argument selection bugs
Castagna et al., 2017 [30] A type system for functional languages to support gradual typing
Chen et al., 2018 [34] An empirical study on how defects impact maintainability
Palomba et al., 2018 [100] Relationship between code smells and fault/change proneness
Wang et al., 2019 [140] An approach to automatically repair buggy loops
Munoz et al., 2020 [94] Validating cognitive complexity’s impact on code understandability
Amit et al., 2021 [9] Measuring the effort invested in bug fixing
Van Oort et al., 2021 [136] Studying the prevalence of code smells in ML projects
Siddiq et al., 2022 [121] A study of code smells in transformer-based code generation
Gupta et al., 2023 [55] A severity assessment of Python code smells
Arteca et al., 2023 [15] A study on detecting incorrect property accesses in JavaScript
Souza et al., 2024 [129] Detecting exception-handling anti-patterns in Java, TS, and Python

promising sustainability. For instance, as shown in Table 4, MCP servers have a higher median
commit frequency (5.5 commits/week) compared to general OSS projects (2.5 commits/week).
In terms of CI adoption (e.g., using tools to automate the compilation, building, and testing of
software), we observe 42.2%MCP servers have adopted CI, which is slightly higher than both the
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Table 4. Comparison of development and community metrics of MCP servers with General OSS and ML
domains. The bold ones are the age-normalized values of time-dependent metrics, e.g., which grow over time.

Metric Name MCP Server General OSS
Domain

ML Domain

Median Total Commit Count 36.3 608.0 [25] 110.0 [64]
Median Commits/Week 5.5 2.5 [19] -
Median Github Contributor Count 2.0 41.0 [25] 2.0 [64]
Norm. Median Github Contributor Count/year 4.0 61.2 [25] -
Median Follower Count Of Contributors 129.6 37.3 [90] -
Norm. Med. Follower Count Of Contribu-
tors/year

259.2 17.0 [90] -

Median Star Count 39.3 66.0 [59] -
Norm. Median Star Count/year 79.0 34.7 [59] -
Median Forks Count 9.0 51.0 [155] -
Norm. Median Forks Count/year 18.0 7.5 [155] -
Median Lines Of Code 925.2 21,168.0 [60] 2,849.0 [136]
Median File Count 9.0 142.0 [60] 26.0 [64]
Median Total Github Issue Count 2.0 673.0 [20] -
Median Issue Lifetime in Days 5.6 4.0 [32] 25.0 [72]
CI Adoption Rate (%) 42.2 40.3 [61] 37.2 [115]
Build Success Rate(%) 90.0 70.0 [33] -
Median Build Duration in Mins 1.9 9.3 [33] 21.4 [22]
Median Time To Fix a Broken Build in Mins 13.9 46.0 [69] -

General OSS domain (40.3%) and the ML domain (37.2%). While the difference compared to general
OSS is not substantial, this adoption rate is notable because prior work reports that open-source
projects typically adopt CI only after one year [61], whereas our findings indicate that MCP servers
often adopt CI within six months of their initial release.
MCP servers also exhibit a higher median build success rate, shorter median build times, and

faster resolution of broken builds compared to the baselines as shown in Table 4. According to
prior research, better build-related metrics indicate that MCP servers are capable of doing
more frequent releases [61], and release frequency can positively impact the development and
sustainability of projects in their early stage [52].
MCP servers exhibit higher age-normalized growth in some metrics, e.g., stars and

forks, despite appearing to lag behind OSS baselines in raw counts. As shown in Table 4, the
median star count and fork count of MCP Servers are lower than the baselines. However, the MCP
protocol was introduced only six months ago, whereas the baseline projects are much older, e.g., the
median age of the projects for fork count and star count are 6.8 and 1.9 years, respectively. Hence,
normalizing these metrics by project age, MCP servers demonstrate an exceptionally fast growth
trajectory. Specifically, MCP servers average approximately 79 stars and 18 forks per year, surpassing
the normalized rates of 34.7 stars and 7.5 per year observed in the OSS baselines. Additionally,
we observe higher community reach of MCP contributors in both raw and age-normalized count
of their followers. These accelerated early-stage trends suggest a promising early trajectory for
sustainability within the MCP ecosystem.
We find that mined MCP servers receive 101.4% more commits than community MCP

servers. The median total commit count in mined, official, and community MCP servers is 44.3,
42.0, and 22.0, respectively. We use a Kruskal–Wallis H-test to confirm that the differences in total
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commit count among the three integration types are statistically significant (𝐻 = 22, 𝑝 = 0.000), and
a post-hoc Mann-Whitney U test with Cliff’s Delta reveals that the difference is only significant for
community vs mined (𝑃𝑐𝑜𝑟𝑟 = 0.000 and 𝑑 = −0.243, small effect). The difference between the other
two combinations is not significant indicating that mined MCP servers have more development
activities than only community servers.
We also find that mined MCP servers are 56% larger than the official MCP server in

terms of LoC.We observe median LoC in mined, official, and community MCP servers are 1,445.5,
929, and 548, respectively. A Kruskal–Wallis H-test confirms that the differences in lines of code
across the three integration types are statistically significant (𝐻 = 44.4976, 𝑝 < 0.0001). Post-hoc
Mann–Whitney U tests with Cliff’s Delta reveal that mined MCP servers contain more lines of
code than official MCP servers (𝑝corr = 0.008, 𝑑 = −0.244, small effect) and community MCP servers
(𝑝corr = 0.000, 𝑑 = −0.345, medium effect). There is no significant difference between official and
community MCP servers. Similar to the previous finding, a larger project size in mined MCP servers
again demonstrates more development activities.

Summary of RQ-0

(1) MCP servers demonstrate healthy development behaviors in terms of early-stage
health and sustainability indicators.

(2) Mined MCP servers are more active and larger in size, suggesting early adopter
momentum.

6.2 RQ-1: To what extent do MCP servers contain security vulnerabilities?
Motivation. Vulnerabilities are widespread in open-source ecosystems. For example, 46% of Python
packages and 40% of JavaScript packages contain at least one known security issue [74, 113]. We
observe widespread adoption of these languages to build MCP servers. e.g., millions of weekly
downloads of the MCP packages [11, 12], raising immediate concerns about their security posture.
Moreover, the vulnerability landscape is evolving with the rise of FM-based AI tools. For instance,
a recent attack targeting the FM-based code editor and MCP client “Cursor” 10 leveraged three
malicious NPM packages to exfiltrate credentials from over 4,200 users.11

This example highlights the broader risks of MCP servers as they mediate access between FMs
and external systems, a dimension that has not existed before. In particular, MCP servers, deployed
locally or remotely, act as intermediaries connecting FMs with sensitive resources, e.g., file systems,
databases, and API endpoints. As a result, MCP servers often handle confidential data, including
credentials, API keys, and user information. This tight coupling with critical infrastructure makes
MCP servers attractive targets for exploitation. Despite this, the extent to which MCP servers are
vulnerable remains unknown.

Motivated by these emerging threat landscapes, we investigate the extent and nature of vul-
nerabilities present in MCP servers. Specifically, this research question aims to characterize the
prevalence and patterns of security vulnerabilities in MCP servers, comparing those with the
reported vulnerabilities from other domains in previous literature and assessing whether current
tools and techniques are sufficient to detect the unique vulnerability landscape of MCP servers.

Approach. To extract vulnerability issues from MCP servers, we perform static analysis on their
codebases using SonarQube, as detailed in Section 5.2.1. Out of five major severity categories of
SonarQube, in this RQ, we focus on the first four severity levels: Blocker, Critical, Major, and Minor.

10https://www.cursor.com/en
11https://thehackernews.com/2025/05/malicious-npm-packages-infect-3200.html
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We extract all vulnerabilities within these categories across the analyzed repositories and use the
LLM-Jury methodology to derive high-level vulnerability patterns.

To ground the identified vulnerability patterns, we map each to its closest corresponding Com-
mon Weakness Enumeration (CWE) [89], a widely adopted taxonomy maintained by the security
community. The mapping process involves examining the definition of the violated SonarQube rule,
referencing the official SonarQube rule documentation [128], and selecting the CWE that best de-
scribes the underlying weakness. For instance, when plaintext credentials such as OPENAI_API_KEY
are detected in the source code, we map this pattern to CWE-798: Use of Hard-coded Credentials, as
described in SonarQube rule S721912.

To assess the real-world impact of these weaknesses, we further check the Common Vulnerabili-
ties and Exposures (CVE) database [37] to identify previously reported security incidents associated
with each mapped CWE. This helps contextualize the potential risk of MCP vulnerabilities by
linking them to known exploits and publicly disclosed attacks.

To capture MCP-specific vulnerabilities we additionally analyze a representative subset of MCP
repositories using the mcp-scan tool [71] as described in Section 5.2.2. Finally, since our dataset
includes three integration types—official, community, and mined, we apply the Kruskal-Wallis H
test followed by pairwise Mann-Whitney U tests with Bonferroni correction to statistically compare
the distributions of vulnerability counts across these groups, following the methodology used in
prior software engineering studies [49].

Findings. MCP servers exhibit “credential exposure” as the most common vulnerability
as opposed to “cross-site-scripting” in PyPI or “malicious package” of NPM ecosystem.
We report the eight vulnerability patterns identified using SonarQube, the traditional vulnerability
detector, in MCP servers in Table 5 along with the top vulnerability patterns available for PyPI,
NPM, and the IaC ecosystem. Among these patterns, only two—authentication issues and improper
input validation–commonly appear as top vulnerabilities in PyPI packages [6], while none are
prominently reported in NPM packages [153]. Credential exposure, which we identify as the most
frequent vulnerability in MCP servers, maps to the hard-coded secrets vulnerability pattern of
Infrastructure-as-Code domain [107]. We also observe a lack of access control, improper resource
management, and transport security issues as other prevalent vulnerabilities in MCP servers, yet
no prior work has found these as top vulnerabilities in other ecosystems. These results demonstrate
that MCP servers face a broader and more distinctive set of vulnerabilities, underscoring the need
for ecosystem-specific analysis and tooling.

7.2% of MCP server repositories contain at least one security vulnerability, with half of
these affected by credential exposure. We summarize the distribution of vulnerability patterns
in Table 6. We detect 277 vulnerabilities across 42 unique MCP servers, which are related closely to
13 CWEs. Many of those CWEs are the root cause of previously reported CVEs in other domains,
as reported in Table 6, indicating that the vulnerabilities detected in the MCP server are non-trivial.
Traditional tools (e.g., SonarQube) detect substantially fewer vulnerabilities in MCP

servers than in ecosystems such as PyPI and NPM. For instance, prior studies report that 46% of
Python packages contain at least one security vulnerability [113], and 40% of NPM packages depend
on code with known vulnerabilities [74]. Furthermore, researchers have identified 119 distinct
Common Weakness Enumerations (CWEs) across the PyPI ecosystem [6] which is significantly
higher than the CWEs found in MCP servers.

MCP-specific analysis, particularly with emerging tools like mcp-scan, presents signifi-
cant engineering challenges. As detailed in our methodology (Section 5.2.2), running mcp-scan
necessitated a complex setup, requiring not only the installation of the MCP servers but also its
12https://next.sonarqube.com/sonarqube/coding_rules?open=secrets:S7219&rule_key=secrets:S7219
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Table 5. Vulnerability patterns across MCP servers, PyPI packages, NPM packages, and IaC scripts, sorted in
descending order of prevalence. Highlighted patterns indicate cross-domain similarities, with superscript
numbers and color denoting the closest semantic match. For example: (1) Credential Exposure in MCP closely
resembles Hard-coded Secrets in IaC; (2) Authentication Issues in MCP align with Access Restriction Bypass
in PyPI; (3) Input Validation Issues in MCP are similar to Improper Input Validation in PyPI.

MCP Servers PyPI Packages [6] NPM Packages [153] IaC Script [107]

Credential Exposure1 Cross-Site-Scripting
(XSS)

Malicious Package Admin by default

Lack of Access Control Denial of Service (DoS) Directory Traversal Empty password
CORS Issues Information Exposure Cross-site Scripting Hard-coded secret1
Improper Resource Man-
agement

Arbitrary Code Execu-
tion

Resource Downloaded
over Insecure Protocol

Invalid IP address bind-
ing

Transport Security Is-
sues

Access Restriction By-
pass

Regular Expression De-
nial of Service

Suspicious comment

Authentication Issues2 Regular Expression De-
nial of Service (ReDoS)

Denial of Service Use of HTTP without
TLS

Insecure File Creation Improper Input
Validation3

Prototype Pollution Use of weak crypto. algo.

Input Validation Issues3 Directory Traversal Command Injection
Remote Code Execution
(RCE)

Arbitrary Code Execu-
tion

Authentication Bypass2 Arbitrary Code Injection

Table 6. Prevalence of vulnerability patterns in MCP servers, along with their closest related CWEs and
example CVEs caused by those CWEs.

MCP Vulnerabilities % of MCP
Servers Related CWEs Example CVEs

Caused by CWEs

Credential Exposure 3.6% CWE-259, CWE-798 CVE-2022-29964
Lack of Access Control 1.4% CWE-306, CWE-284 CVE-2022-24985
CORS Issues 1.2% CWE-345 –
Improper Resource Management 1.0% CWE-770 CVE-2022-23471
Transport Security Issues 0.7% CWE-295, CWE-297, CWE-327 CVE-2021-22909
Authentication Issues 0.5% CWE-347 CVE-2002-1796
Insecure File Creation 0.2% CWE-377 CVE-2022-41954
Input Validation Issues 0.2% CWE-611 CVE-2022-42745

complete runtime configuration, including API credentials and auxiliary services. Despite following
these steps, in our initial attempt to scan a representative sample of 83 MCP servers, only 60 scans
were successful, with the remainder failing due to an issue within the tool. After we reported this
to the maintainers, they released a fixed version that enabled us to successfully scan an additional
13 servers, bringing our total to 73. These events highlight that such MCP-specific tools are still
evolving in their early lifecycle.

Despite the operational challenges and early stage of the tool, we still detect potential
tool poisoning in 5.5% of MCP servers, which is more prevalent than credential exposure.
The ability of an early-stage tool, deployed with considerable effort on a limited sample, to uncover
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this rate of a critical MCP-specific vulnerability strongly underscores the likelihood of more hidden
issues that existing tools are currently unable to detect.
While mcp-scan is able to detect tool poisoning, it misses other security concerns,

such as excessive permission requirements and insecure default behaviors. During the
setup process, we manually uncovered several concerning patterns that were not flagged by the
scanner. For instance, the apple-notes-mcp server13 requires full disk access on macOS to interact
with the native Apple Notes SQLite database highlighting an overly privileged configuration that
which can introduce a significant attack surface. Similarly, godot-mcp14 was configured with auto-
approval enabled for sensitive operations such as stopping projects or modifying project identifiers,
potentially allowing unvetted commands to be executed. These issues are missed by mcp-scan
because it relies on tool descriptions obtained through reflection rather than analyzing the source
code, limiting its ability to catch deeper or context-specific security flaws.

Pure MCP servers are more prone to credential exposure and transport security issues
than the MCP servers derived from other applications, in which 85% of the identified
vulnerabilities are found in deployment files. To better understand MCP server vulnerabilities,
we analyze five random MCP servers that are “pure” MCP implementations without inherited
legacy code or multifunctional roles. The most common vulnerabilities in these projects are cre-
dential exposure and transport security issues. For instance, we identify transport security issues,
e.g., SSL/TLS verification bypasses in sooperset/mcp-atlassian and tuanle96/mcp-odoo, while
credential exposure was prevalent in amornpan/py-mcp-mssql, kiliczsh/mcp-mongo-server,
and Matmax-Worldwide/payloadcmsmcp. Then, we analyze the projects with more than five iden-
tified vulnerabilities. We found that only five MCP servers—SciPhi-AI/R2R, alibaba/higress,
devflowinc/trieve, get-convex/convex-backend, and anaversity/learn-agentic-ai—fit this
criterion and in these servers 85% vulnerabilities are found in “.yaml” files. At the same time, all the
MCP servers with more than five vulnerabilities have implemented MCP as an additional feature
in addition to their current functionalities. This highlights that the vulnerabilities in pure MCP
repositories and other repositories where MCP is a derived feature need to be studied differently.
The traditional vulnerability scanner SonarQube cannot detect any vulnerabilities

in official MCP servers. Figure 4 illustrates the distribution of vulnerability counts per server,
grouped by integration type (official, community, and mined) where both community and mined
MCP servers have a median vulnerability count of 2, while no vulnerability is found in official MCP
servers. Interestingly, this mirrors findings from the Docker ecosystem, where official images have
been shown to exhibit fewer vulnerabilities compared to community-maintained ones [143].
We detect exposed OpenAI and Gemini API keys, Google Cloud service account cer-

tificates, and GitHub tokens in community and mined MCP server repositories, posing
significant risks of financial loss and unauthorized access. Figure 5 presents three repre-
sentative examples of such credential exposures across JSON, Python, and certificate files from
real-world repositories. Leaked API keys for platforms like OpenAI and Google Cloud can be
exploited by malicious actors to initiate high-volume API calls, potentially resulting in substantial
financial charges for the affected account owners. Likewise, exposed GitHub tokens may allow
unauthorized access to private repositories or CI/CD pipelines. As shown in Table 6, these are
indicative of CWE-798 (Use of Hardcoded Credentials), which has been associated with several
previous high-impact security incidents, including CVE-2022-29964.

13https://github.com/sirmews/apple-notes-mcp
14https://github.com/Coding-Solo/godot-mcp
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Fig. 4. Vulnerability count distribution per MCP server grouped by Integration Type.

1 OPENAI_API_KEY ": "sk-Wo ******** g5"

(a) Hardcoded OpenAI API key in a JSON configuration file.

1 # Configure Gemini

2 genai.configure(api_key='AIza **** -****1 zn4')

3 model = genai.GenerativeModel('gemini -2.0-flash -001')

(b) Gemini API key exposed directly in Python source code.

1 "type": "service_account",

2 "project_id ": "***",

3 "private_key_id ": "d4d ****4a4",

4 "private_key ": "-----BEGIN PRIVATE KEY -----\***\n-----END PRIVATE KEY

-----\n",

5 "universe_domain ": "googleapis.com"

(c) Google Cloud service account private key exposed in a certificate file.

Fig. 5. Examples of credential exposure across different code and configuration formats. As these are sensitive
credentials and keys we have obfuscated those.

Summary of RQ-1

(1) MCP servers exhibit distinct vulnerability patterns compared to other domains of
software engineering. Out of eight vulnerability patterns detected in MCP servers,
three are common with other domains.

(2) MCP-specific vulnerabilities can be highly prevalent as even an early stage tool could
already detect 5.5% MCP-specific issues.

(3) Credential exposure, e.g., API Keys from FM service providers, GitHub tokens, can
cause significant financial loss and major data breaches.

RQ-2: To what extent do MCP servers contain maintainability issues?
Motivation.Maintainability remains a pressing concern in modern software systems, especially in
the era of FM-based AI applications. According to the State of Software-2025 report [54], 73% of AI
and big data systems fall below the industry benchmark for maintainability. In mature organizations,
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overheads to tackle maintainability issues can reach up to £250,000 (USD $332,500) per system
annually. Two primary sources of those maintainability issues are code smells [150] and software
bugs [34]. Prior research has demonstrated that code smells (e.g., high cognitive complexity) are
strongly correlated with increased debugging time and elevated software error rates [94]. In addition,
many code smells are often linked to bugs or fault-proneness of the systems [100], while software
bugs themselves impose a considerable engineering burden—up to 39% of developer effort in leading
GitHub projects is spent solely on bug fixing [9].
These concerns are particularly relevant to MCP servers, as this is a relatively new software

paradigm used to connect FMs with external tools and data sources in comparison to other similar
domains, e.g., PyPI or NPM packages. As prior studies suggest that most code smells are intro-
duced during initial code creation rather than being accumulated over time [134], MCP server
implementations may be particularly susceptible to maintainability issues, e.g., code smells, making
early assessment critical. Motivated by these risks, this research question aims to systematically
characterize the types and prevalence of code smells and software bugs in MCP servers. We also
explore whether the prevalence of code smells and bugs has any statistical difference across various
programming languages and integration types. By analyzing these systems at an early stage, we
seek to provide actionable insights into their maintainability profile and identify patterns that may
guide future development and tooling efforts.

Approach.We use the static analysis tool SonarQube to identify both code smells and bugs. We
filter and retain only the critical and blocker-level code smells and bugs, and then use an LLM-Jury
to categorize these issues into higher-level patterns as described in Section 5. We analyze these
clusters to understand the most recurrent maintainability issues in the early-stage MCP servers
and compare those with other software domains.
In addition, we conduct Kruskal-Wallis H-tests followed by pairwise Mann-Whitney U tests

with Bonferroni correction to compare code smell and distributions across different programming
languages (e.g., Python, JavaScript, TypeScript) and integration types (official, community, mined).
We also compute Cliff’s Delta (𝑑) for each pairwise comparison to quantify the effect size.

Findings. We report our findings for code smells and bugs in the following subsections.

6.2.1 Prevalence of code smells in MCP server repositories. All high-frequency code smells
from traditional and ML systems also appear in MCP servers, indicating that existing
techniques can be reused to improve MCP maintainability. Since different analyzers define
code smells at varying levels of granularity (e.g., SonarQube’s high cognitive complexity vs. PyLint’s
line-too-long, complex code), we align SonarQube-detected smells in MCP servers with top-ranked
smells in prior studies on Python ML project [136] and FM-generated code [121] based on semantic
similarity and summarize this in Table 7. To contextualize our findings, we use these semantically
similar categories for comparison. We find strong parallels when comparing code smells commonly
studied in the JavaScript ecosystem [116]. Specifically, top JavaScript smells such as lengthy lines,
chained methods, and long functions correspond closely to the high cognitive complexity patterns
observed inMCP implementations. These overlaps suggest that refactoring techniques from existing
literature, e.g., extraction, move [111, 122], de-compositional object techniques [5, 123] can also
benefit the MCP domain to refactor smelly code.

66% ofMCP servers contain at least one critical or blocker-level code smell, with some of
those code smells, e.g., import & dependency issues, variable declaration, and usage issues,
present in 100% Python ML projects. We identify a total of 17,832 critical and blocker-level
code smells across 385 MCP servers and present the distribution of these issues across different
programming languages in Table 8. Notably, the median number of critical code smells in MCP

ACM Trans. Softw. Eng. Methodol., Vol. , No. , Article . Publication date: 2025.



24 M. Mehedi Hasan et al.

Table 7. Code smell patterns across MCP Servers, ML Projects and FM Generated Code sorted by prevalence
in descending order. The first column (MCP server) includes prevalence percentages. Highlighted patterns
indicate cross-domain similarities, with superscript numbers and color denoting the closest semantic match.

MCP Servers ML Projects [136] FM-Generated
Code [121]

High Cognitive Complexity (59.7%)1 unused-wildcard-import5 Undefined-variable4
Code Duplication-Redundancy2 (21.4%) bad-indentation1 Line-too-long1
Function Structure Issues (19.4%)3 invalid-name4 Unused-argument3
Variable Declaration and Usage Issues
(11.8%)4

line-too-long1 Pointless-statement1

Asynchronous & Concurrency Issues
(10.8%)

missing-function-docstring3 Pointless-string-
statement4

Runtime Issues (8.7%) no-member3 No-member3
JavaScript/TypeScript Specific Issues (4.1%) duplicate-code2 Used-before-assignment4
Type Safety and Correctness (2.7%) trailing-whitespace1 Superfluous-parenthesis1
Import & Dependency Issues (1.4%)5 redefined-outer-name4 Duplicate-code2
Python Specific Issues (1.2%) missing-module-docstring1 Consider-using-

enumerate4

Table 8. Distribution of critical and blocker code smells across programming languages. Critical smell %
and Blocker smell % indicate the percentage of projects where at least one critical or blocker-level code
smell is present. Median Critical and Median Blocker represent the median number of critical and blocker
code smells per project, respectively.

Language Critical smell % Median Critical Blocker smell % Median Blocker

Python 68.1 1.0 5.6 0
JavaScript 39.8 2.0 1.3 0
TypeScript 61.1 4.0 5.8 0
Others 47.3 12.0 4.4 0

servers ranges between 2 and 4 in the most commonly used programming languages, e.g., Python,
JavaScript, and TypeScript, while the median number of blocker-level code smells is zero across all
these languages. In contrast, traditional software engineering studies have reported that certain
code smells can be present in nearly 100% of the studied Python ML projects and traditional Python
projects [35, 136] and up-to 97% FM generated code can contain code smells [121].
59.7% of MCP servers suffer from high cognitive complexity, which is also considered

as the one of the most severe code smells in Python ecosystem. As summarized in Table 7,
we observe that high cognitive complexity is almost three times more prevalent than the second
most common code smell, e.g., code duplication-redundancy, in MCP servers. Cognitive complexity
is a widely used metric for modeling and estimating the functional complexity, size, and effort
required for software development [141]. While prior studies suggest a threshold of 15 for cognitive
complexity [94], violation of this threshold is considered the one of the most severe code smells in
the Python ecosystem [55]. Similarly, this threshold is violated in a substantial portion (59.7%) of
MCP servers, which can lead to increased comprehension time, reduced understandability, and
higher debugging time and error rates [94].
Mined MCP servers contain 66% more code smells than both official and community

servers. Figure 6a presents the distribution of code smell counts per MCP server across different
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integration types on a logarithmic scale. We observe a median code smell count of 5 in mined MCP
servers, compared to 3 in official and community MCP servers. A Kruskal-Wallis H-test reveals
a significant difference in code smell counts among the three integration types (𝐻 = 23.2936,
𝑝 < 0.001). Post-hoc Mann-Whitney U tests indicate that mined servers have more code smells
than both official (𝑃 − 𝑣𝑎𝑙𝑢𝑒 = 0.004 and 𝑑 = −0.322, small effect) and community (𝑃 − 𝑣𝑎𝑙𝑢𝑒 = 0.000
and 𝑑 = −0.280, small effect) servers. However, the difference between official and community MCP
servers is not statistically significant. We can partially explain by the larger size of mined MCP
servers found in Section 6.1, as prior work [149] has shown a positive correlation between code
size and code smells.
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(a) Code smell count distribution by integration
type in logarithmic scale.
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(b) Code smell count distribution by programming
language in logarithmic scale.

Fig. 6. Comparison of code smells by integration type and programming language.

JavaScriptMCP servers tend to have 50% fewer code smells compared to both Python and
TypeScript MCP servers. Figure 6b shows the distribution of code smell counts per MCP server
across different programming languages. We observe median code smell counts of 2 in JavaScript
MCP servers, compared to 4 in both official and community MCP servers. A Kruskal-Wallis H-test
reveals significant differences in code smell counts among the three groups(𝐻 = 26.531, 𝑝 < 0.001).
Post-hoc Mann-Whitney U tests show that both Python(𝑃𝑐𝑜𝑟𝑟 = 0.000 and 𝑑 = 0.395, medium
effect) and TypeScript(𝑃𝑐𝑜𝑟𝑟 = 0.000 and 𝑑 = 0.415, medium effect) servers have significantly more
code smells than JavaScript servers whereas the difference between Python and TypeScript is not
statistically significant.

6.2.2 Prevalence of bugs in MCP server repositories. Despite language and domain differences,
at least 30% of MCP servers’ most frequent bugs overlap with known bug patterns in
Java applications, indicating that established debugging techniques can be reused with
adaptation.We report and compare the most frequent bugs in MCP servers with those reported in
Java applications analyzed using FindBugs [18], as shown in Table 9. While our sample contains
no Java-based MCP servers, we used this baseline due to the scarcity of large-scale static bug
analyses in Python and JavaScript ecosystems. Unlike vulnerabilities (standardized via CWEs)
and code smells (driven by consistent static rules), bugs are influenced by diversified factors, e.g.,
language and development context [108, 132]. Nonetheless, we find three overlapping bug patterns,
suggesting partial applicability of conventional bug mitigation strategies in the MCP ecosystem.
We identify nine distinct bug categories affecting 14.4% of MCP servers, all of which

have been studied before in Java, Python or JavaScript ecosystems. From Table 9, we observe
that the top three bug patterns in MCP servers, i.e., Array Manipulation Issues, Parameter
Mismatches, and Type/Structure Issues, do not appear in the Java ecosystem’s reported bug
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Table 9. Top bug types and their distribution across MCP servers and Java projects. MCP server percentages
are shown in parentheses. The table is sorted in descending order of prevalence. Highlighted patterns indicate
cross-domain similarities, with superscript numbers and color denoting the closest semantic match.

MCP Servers Java Projects [18]

Array Manipulation Issues (6.2%) Nullcheck of value previously dereferenced
Parameter Mismatch (3.1%) Possible null pointer dereference
Type/Structure Issues (2.9%) Unwritten field
Mishandled Exceptions (2.2%)1 Invocation of toString on an array3
Object Property and Method Design Issues (1.7%)2 Class defines field that masks a superclass field
Iterable and Collection Issues (1.7%)3 Method call passes null for unconditionally derefer-

enced parameter2
Infinite Loop (1.7%) Possible null pointer dereference in method on excep-

tion path1
Style Issues (0.9%) Method ignores return value
Getter/Setter and Object Property Access (0.7%) Field only ever set to null

Suspicious reference comparison

Table 10. Distribution of critical and blocker bugs across programming languages. Critical bug % and
Blocker bug % indicate the percentage of projects where at least one critical or blocker-level bug is present.
Median Critical andMedian Blocker represent the median number of critical and blocker bugs per project,
respectively.

Language Critical bug % Median Critical Blocker bug % Median Blocker

Python 3.6 0 8.1 2.0
JavaScript 2.6 2.0 1.5 0
TypeScript 13.1 3.0 1.8 0
Others 7.0 46.0 3.0 3.0

taxonomies. Of the other six bug categories, three (i.e., Mishandled Exceptions, Collection
Misuse, and Object Method Design Issues) have been spotted before in the Java ecosystem.
Those not found in the Java ecosystem (including the most prevalent three), do occur in other
ecosystems, and hence are known to practitioners and the research community. For example,
Array Manipulation Issues, which often arise when practitioners do not pass any comparator
function while sorting an array, can lead to unintended behavior such as lexicographic sorting
in the JavaScript community 15. Other than that, parameter mismatch where a function is called
with incorrect arguments in terms of name or number [110], type/structure issues originating from
wrong type intersection [30], infinite loop [140], style issues related to invalid CSS property [101]
and getter/setter and object property access issue caused by unintentional write or read behavior
in getter/setter methods [15] have been identified in the Python and JavaScript literature. These
overlaps suggest that existing debugging practices can address many MCP-specific bugs, at least at
the detection and fix level.
Bug percentages in MCP servers do not vary across different programming languages

whereas mined MCP servers contain 67% more bugs than community MCP servers. We
detect a total of 523 bugs across 84 unique MCP projects. We illustrate the language-wise bug
distribution in Table 10 and also the corresponding violin plot distributions in Figure 7a. Although

15https://v8.dev/blog/array-sort
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Fig. 7. Comparison of bugs by integration type and programming language across MCP servers.

from the table it appears that TypeScript can be more susceptible to critical bugs and Python is more
susceptible to blocker bugs, a Kruskal-Wallis statistical test indicates that there is no significant
difference in the prevalence of bugs with respect to the programming language of MCP servers
(𝐻 = 4.9, 𝑝 = 0.178).

In contrast, bug prevalence across integration types as shown in Figure 7b. A Kruskal-Wallis
H-test reveals significant differences in bug counts among the three groups with (𝐻 = 9.6, 𝑝 = 0.008).
Post-hoc Mann-Whitney U tests with Cliff’s delta show that mined servers have significantly more
bugs than community servers (𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.026 and 𝑑 = -0.557, large effect) where the differences
in other pairs are not significant. We suspect that the higher commit activity reported in Section 6.1
can have an association with this behavior as previous studies indicated that a higher frequency of
commits, especially those not adhering to contribution norms, was associated with an increased
likelihood of introducing bugs [50].

Summary of RQ-2

(1) 66% of MCP servers contain at least one critical or blocker-level code smell, and 14.4%
exhibit at least one statically detected bug, indicating widespread maintainability
concerns.

(2) The most prevalent code smell is high cognitive complexity, affecting 59.7% of MCP
servers—three times more frequent than the next most common smell—and strongly
linked to reduced understandability and higher error risk.

(3) Mined MCP servers exhibit more code smells and bugs than official or community
servers, possibly due to their higher development activity or less structured mainte-
nance practices.

(4) All identified MCP bug types overlap with known bugs from Java, Python, and
JavaScript ecosystems, suggesting that existing debugging and refactoring tools may
be reused or adapted for MCP development.

7 Implications
MCP servers demonstrated a strong indication of long-term sustainability regarding different
metrics we studied in Section 6.1. Hence, we must make sure the MCP ecosystem grows in a secure
and maintainable manner. In this section, we discuss the implications of our study on the security
and maintainability dimensions of MCP servers. Specifically, we have three target audiences in
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the MCP ecosystem: (i) Researchers, (ii) Practitioners, and (iii) Ecosystem, e.g., MCP Registry,
Maintainers. In the following subsections, we discuss the implications of our findings for each of
these target audiences.

7.1 Implication for Researchers
Security researchers should expand standard vulnerability databases, e.g., CWE, OWASP,
to include MCP-specific threats. Our study reveals that common MCP vulnerabilities, e.g.,
such as tool poisoning, credential exposure, and transport security issues, are largely absent from
existing vulnerability taxonomies (e.g., CWE, OWASP). While we observed 13 distinct CWEs in
MCP servers, only one (CWE-306) appears in the current MITRE Top 25. On the other hand, while
we have OWASP top-10 for GenAI16, we do not have anything similar for the MCP domain. We
urge the security research community to formalize MCP-specific threat models and advocate for
their inclusion in standard databases and taxonomies.

Researchers should developMCP-specific vulnerability analysis tools to uncover hidden
risks beyondwhat general-purpose scanners can detect.While traditional tools like SonarQube
successfully identify some MCP vulnerabilities, e.g., credential exposure and transport security
issues, our findings showed that these issues appear in only a small fraction of repositories. This
low prevalence suggests an unusually secure ecosystem or, more likely, an under-detection problem
rooted in the limitations of current tools. Additionally, existing MCP-specific tools like mcp-scan
remain in early development stages and currently target only one class of vulnerability (tool
poisoning), with limited reliability and coverage. These gaps underscore the need for new MCP-
specific tools that account for the unique operational characteristics of MCP servers—including
dynamic tool invocation, runtime dependency management, and FM-specific interaction patterns.
Inspired by our hybrid analysis approach, future research can explore integrated frameworks that
combine static and dynamic analysis, program instrumentation, and FM-aware code inspection to
surface latent vulnerabilities specific to the MCP domain.

7.2 Implication for Practitioners
We can classify MCP practitioners into two groups : (i) MCP Developers who build and manage
MCP servers and tools and (ii) MCP Users who use MCP servers to build FM-based AI applications.
Each group can benefit by interpreting the results of this study and applying those in real-life
scenarios.
MCP developers must adopt proactive security practices to prevent credential expo-

sure and related vulnerabilities. Our findings reveal that sensitive credentials, e.g., API keys,
service account secrets, and access tokens, are frequently left exposed in MCP server codebases
(Section 6.2). These exposures pose immediate threats, including unauthorized system access,
service abuse, and financial losses. Developers should integrate static application security testing
(SAST) into their CI pipelines and adopt secure coding practices to mitigate these risks, as sug-
gested in prior research [41]. While tools like SonarQube can detect many low-hanging issues,
we recommend extending this with MCP-specific tools (e.g., mcp-scan) to catch issues unique to
the domain. In addition, teams should implement secure development workflows incorporating
peer-reviewed pull requests, automated secret detection (e.g., GitLeaks), and environment-based
credential management to reduce exposure risks [21, 103].
MCP developers should leverage proven ML and LLM-based techniques to detect and

remediate code smells and bugs. Our study finds that MCP servers exhibit code smells and bugs
that closely mirror those observed in traditional software domains (Section 6.2). This similarity

16https://genai.owasp.org/llm-top-10/
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allows practitioners to apply well-established techniques from the broader software engineering
literature. Prior works demonstrate that FMs have potential to identify smells, generate human-like
refactorings, and even provide semantic bug fixes [8, 144]. In the context of MCP development,
these findings suggest multiple actionable paths: developers can integrate LLM-based tools for
code smell and bug detection, adopt LLM-enhanced IDE assistants for reducing code smell while
writing code, and leverage automated refactoring tools to resolve the existing code smells and bugs
for long-term code quality. Given the structural and behavioral parallels between MCP servers
and traditional software systems, developers are encouraged to integrate these advanced tools into
their workflows.
MCP users should audit third-party MCP servers for security vulnerabilities before

deployment to avoid downstream risk propagation. Our findings indicate that vulnerabilities
from MCP servers, e.g., lack of access control, improper resource management, transport security
issues, and insecure file creation, may propagate into downstream applications and compromise the
host environment. In addition, emerging threats like tool poisoning introduce new risks whereby
FMs could be coerced into executing malicious toolchains on user infrastructure, leading to per-
sistent compromise or data exfiltration. To mitigate these risks, MCP users should incorporate
proactive auditing workflows. While still evolving, tools such as SonarQube and mcp-scan offer
a foundational level of detection and can surface common vulnerabilities. Although these tools
may not detect the full spectrum of MCP-specific threats, our study shows that they can still
identify some key issues, which makes them a good starting point. MCP users should have this
bare minimum audit process until the research community develops better, state-of-the-art tools.

7.3 Implication for Ecosystem Maintainers
Ecosystem (e.g., MCP registry) maintainers should establish standardized governance
mechanisms and provide clear developer guidelines to ensure baseline security and quality.
MCP registries, e.g., Smithery [126], Glama [2], or CloudflareWorkers [38], serve as centralized hubs
for discovering and deployingMCP servers. As our study already highlighted security vulnerabilities
and maintainability issues in MCP servers, this calls for broader governance initiatives from registry
maintainers. While some registries implement basic review processes (e.g., isolated manual testing
or simple pull requests), these are often limited to infrastructure setup or package-level scans. For
instance, Glama performs manual review in an isolated VM and scans the server for Python and
NPM dependencies17 and Smithery performs automated analysis of the MCP server code and raises
simple pull requests to create Dockerfiles or any obvious missing dependencies. However, these
checks fail to capture issues like credential exposure or MCP-specific tool poisoning. To mitigate
these risks, registries should formalize governance protocols, including submission checklists,
required permission disclosures, and security guideline conformance similar to other mature
registries, e.g., Google Play Store or iOS app store [14, 65].

MCP registries should incorporate automated vulnerability and sustainability scanning
and revocation workflows to prevent the propagation of insecure MCP servers. As central-
ized distribution platforms, registries are critical in ecosystem-wide security. However, without
automated pre-publication scanning and post-deployment monitoring, they risk serving as vectors
for vulnerability propagation. Inspired by mature ecosystems like the Google Play Store, Docker
Hub, and the iOS App Store, registry maintainers should establish continuous monitoring and
enforce automated revocation policies for non-compliant or vulnerable servers [28, 139]. These
policies and workflows reduce the burden on end users and create a scalable security model that
will evolve with the growing adoption of MCP infrastructure.

17https://www.reddit.com/r/mcp/comments/1hm3g2s/glama_mcp_server_directory/
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8 Threats to Validity
8.1 External validity
In this study, we analyzed open-source MCP servers, acknowledging that they may not fully
represent the entire population of MCP servers. To mitigate this threat to external validity, we
constructed our dataset using a diverse set of sources, including Anthropic’s official curated list
and additional MCP servers mined from GitHub using a search-based approach.
Similarly, the vulnerabilities identified through our SonarQube analysis may not constitute an

exhaustive list of all potential vulnerabilities in the MCP servers. Nevertheless, to the best of our
knowledge, SonarQube’s security rules cover all categories outlined in the MITRE CWE Top 25,
OWASP Top 10, and PCI DSS standards [128]. Therefore, we expect that the most prevalent and
critical software vulnerabilities are reflected in our analysis. Additionally, we utilized mcp-scan
to detect MCP-specific vulnerabilities (e.g., tool poisoning). While mcp-scan is a relatively new
and continuously evolving tool, it was the most widely recognized and actively maintained option
available at the time of our study.

We report the prevalence of code smells and bugs based on SonarQube analysis in RQ-2. Although
prior research has noted that SonarQube-reported “bugs” may not always correspond to actual
faults, and that some “code smells” may exhibit a stronger correlation with real defects [76], our
focus in RQ-2 is on the maintainability of MCP servers. Accordingly, we report both bugs and code
smells as indicators of maintainability concerns.
Also, as our mining technique heavily relies on the import patterns of official MCP SDKs,

repositories using MCP without explicit imports, e.g., via other third-party SDKs, may be missed
from our analysis. However, as the primary mining could gather 1,899 MCP servers, the search
patterns of official MCP SDKs are sufficient at the time of the study.

8.2 Construct validity
As MCP servers represent a nascent technology space, many open-sourced projects may be experi-
mental or built by early adopters. Though we applied a star-based filter to exclude the toy projects,
we acknowledge previous works stating that star count may not be a good proxy for repository
quality or relevance [93]. However, as the MCP concept itself is less than a year old, we could not
go for a more rigorous filtering and chose a 10-star threshold as a reasonable compromise between
the data quality and the quantity, as suggested in other previous works [42].

The metrics used in this study to assess future sustainability, as discussed in Section 6.1, may not
represent an exhaustive set of possible indicators. Additionally, for some metrics, median values
were not available in other domains. Nevertheless, we made extensive efforts to gather metric
definitions from existing literature [39, 146] and reviewed all possible empirical studies to obtain
corresponding values. It is important to note that our goal in presenting these metrics across
different ecosystems is not to offer an absolute comparison, but rather to provide an indication of
whether an ecosystem appears to be in a generally healthy state.

The vulnerability patterns clustered by LLM-Jury could be a source of threat, as LLMs are often
susceptible to hallucination. However, we mitigated this threat by grounding the patterns with
the support of CWEs, as CWEs are often used to ground the vulnerability detected through open
coding [107] and manual analysis [137]. We also added a manual human verification for random 25
samples not only for vulnerability but also for code smells and bugs.
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8.3 Internal validity
In this study, we investigated open-source MCP servers’ health, sustainability, security vulnerabili-
ties, and maintainability issues. A key methodological challenge lies in establishing appropriate
baselines for comparison, especially given the young age of the MCP ecosystem.
For RQ-0, where we studied development and community health, we derived baselines from

a broad set of prior works focused on general open-source projects. These metrics are widely
referenced in prior literature [39, 146], but no single prior study provided a unified baseline
covering all metrics considered (e.g., commit frequency, CI adoption, contributor count). Hence,
we synthesized baselines by aggregating metric distributions reported across diverse studies with
varying sampling criteria, project maturity, and domains. For example, metrics for general OSS
projects often reflect mature repositories with multi-year histories, while MCP servers are, on
average, less than six months old. To mitigate this, we normalize time-dependent measures, perform
statistical tests among the integration types and highlight relative positioning rather than making
absolute judgments.

In RQ-1, we compared MCP vulnerabilities with those reported in PyPI, NPM, and infrastructure-
as-code (IaC) ecosystems. However, the methodologies of these baseline studies differ from ours. For
example, PyPI andNPMvulnerability counts are drawn from third-party vulnerability databases (e.g.,
Snyk), which rely on community reporting. In contrast, we employ static analysis via SonarQube
and MCP-specific tooling. The prior IaC study [107] partially aligns methodologically through static
analysis. To mitigate this, we also reported the static analysis focusing vulnerabilities [74, 113],
which unfortunately reports only prevalence and does not prioritize taxonomy. As the motivation
of this study is to understand the current state-of-the-art landscape of MCP servers without a
comparable baseline, it is hard to relate the findings that justify the baseline choices.

In RQ-2, the bug taxonomy we use for comparison is drawn from FindBugs-based studies on Java
applications [18]. Though none of the MCP servers analyzed are written in Java, we could not find
any comprehensive, static-analysis-driven bug taxonomies for Python, JavaScript, or TypeScript—
the dominant languages in the MCP ecosystem. Hence, using Java-based taxonomies as reference
points represents an unavoidable compromise due to the limited availability of domain-specific
baselines. To mitigate this, we also studied language-specific research on individual bug patterns
observed in MCP servers and reported those findings separately to address this.
Finally, MCP is a rapidly evolving paradigm, and our baseline choices reflect the best available

options at the time of study. As the ecosystem matures and more empirical research becomes
available, we expect the relevance and precision of comparisons to improve.

9 Conclusion
Our paper presents the first large-scale empirical study of 1,899 MCP servers, evaluating their
sustainability, security, and maintainability using a hybrid analysis approach that combines a
general-purpose static analysis tool (i.e., SonarQube) with an MCP-specific tool (i.e., mcp-scan).

Our findings show that MCP servers generally exhibit strong signals of long-term sustainability,
with higher or equal median values in 9 out of 14 key development and community metrics.
Maintainability issues such as code smells and bugs—affecting 66% and 14.4% of MCP servers,
respectively—occur at rates comparable to traditional open-source systems. Our findings suggest
that established techniques for assessing sustainability and improving maintainability remain
applicable in the MCP context.
In contrast, MCP servers diverge notably in their security profile. We identify eight distinct

vulnerability patterns in 7.2% of MCP servers, only three of which overlap with common issues in
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ecosystems like Python or Infrastructure-as-Code. Additionally, 5.5% of MCP servers exhibit tool
poisoning—an emerging, MCP-specific threat.

These findings signal a shift in the risk surface of modern FM-based AI application infrastructure
and highlight the need for dedicated tools and taxonomies to identify and address MCP-specific
vulnerabilities. As MCP adoption accelerates, researchers, practitioners, and registry maintainers
must invest in domain-specific security tooling, automated auditing, and robust governance to
ensure the safe and reliable evolution of FM-based software systems.

Disclaimer
Any opinions, findings, and conclusions, or recommendations expressed in this material are those
of the author(s) and do not reflect the views of Huawei. We have used AI tools, e.g., Grammarly,
ChatGPT, Gemini in this study to fix the grammatical and writing issues.
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